15.設loga2=m(a>0,且a≠1),則a2m的值是4.

分析 根據(jù)對數(shù)的定義和指數(shù)冪的運算性質計算即可.

解答 解:∵loga2=m(a>0,且a≠1),
∴am=2,
∴a2m=(am2=4,
故答案為:4.

點評 本題考查了對數(shù)的定義和指數(shù)冪的運算性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知α為第四象限角,且cosα-|sinα-cosα|=-$\frac{3}{5}$,求tanα,sin2α,cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.甲、乙、丙、丁四個人去旅游,可供選擇的景點有3個,每人只能選擇一個景點且甲、乙不能同去一個景點,則不同的選擇方案的種數(shù)是( 。
A.54B.36C.27D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=Asinx+cosx,A>0.
(1)若A=1,求f(x)的單調遞增區(qū)間;
(2)函數(shù)f(x)在x=x0處取得最大值$\sqrt{13}$,求cosx0 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.曲線y=cosx在點($\frac{π}{3}$,$\frac{1}{2}$)處的切線的斜率為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m,m+1),$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)m的值為(  )
A.1B.-1C.-$\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知數(shù)列{an}的前n項和為Tn,a1=1且a1+2a2+4a3+…+2n-1an=2n-1,則T8-2等于( 。
A.$\frac{31}{32}$B.$\frac{255}{64}$C.$\frac{63}{64}$D.$\frac{127}{128}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為兩平面向量,且|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{1}}$|=1,<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=60°.
(1)若$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{1}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$-6$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,求證:A,B,D三點共線;
(2)若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2λ$\overrightarrow{{e}_{\;}}$2,$\overrightarrow$=λ$\overrightarrow{{e}_{\;}}$1-$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$⊥$\overrightarrow$,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知不等式組$\left\{\begin{array}{l}{y≤x}\\{y≥-x}\\{x≤2}\end{array}\right.$表示的平面區(qū)域為S,點P(x,y)∈S,則z=2x+y的最大值為6.

查看答案和解析>>

同步練習冊答案