精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=
5
,AA1=3,M為線段BB1上的一動點(diǎn),則當(dāng)AM+MC1最小時(shí),△AMC1的面積為
 
分析:先將直三棱柱ABC-A1B1C1沿棱BB1展開成平面連接AC1,與BB1的交點(diǎn)即為滿足AM+MC1最小時(shí)的點(diǎn)M,由此可以求得△AMC1的三邊長,再由余弦定理求出其中一角,由面積公式求出面積
解答:解:將直三棱柱ABC-A1B1C1沿棱BB1展開成平面連接AC1,與BB1的交點(diǎn)即為滿足AM+MC1最小時(shí)的點(diǎn)M,
由于AB=1,BC=2,AA1=3,再結(jié)合棱柱的性質(zhì),可得BM=
1
3
AA1=1,故B1M=2
由圖形及棱柱的性質(zhì),可得AM=
2
,AC1=
14
,MC1=2
2

cos∠AMC1=
2+8-14
2
× 2
2
=-
1
2

故sin∠AMC1=
3
2

△AMC1的面積為
1
2
×
2
×2
2
×
3
2
=
3

故答案為
3
點(diǎn)評:本題考查棱柱的特征,求解本題的關(guān)鍵是根據(jù)棱柱的結(jié)構(gòu)特征及其棱長等求出三角形的邊長,再由面積公式求面積,本題代數(shù)與幾何相結(jié)合,綜合性強(qiáng),解題時(shí)要注意運(yùn)算準(zhǔn)確,正確認(rèn)識圖形中的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對角線交于點(diǎn)D,B1C1的中點(diǎn)為M,求證:CD⊥平面BDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點(diǎn),E為B1C的中點(diǎn).
(1)求直線BE與A1C所成的角;
(2)在線段AA1中上是否存在點(diǎn)F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分別為AC,B1C1的中點(diǎn).
(Ⅰ)求線段MN的長;
(Ⅱ)求證:MN∥平面ABB1A1;
(Ⅲ)線段CC1上是否存在點(diǎn)Q,使A1B⊥平面MNQ?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中點(diǎn).
(Ⅰ)證明:A1C1∥平面ACD;
(Ⅱ)求異面直線AC與A1D所成角的大;
(Ⅲ)證明:直線A1D⊥平面ADC.

查看答案和解析>>

同步練習(xí)冊答案