橢圓
的左右焦點分別為
,P為橢圓上一點,且
,則橢圓的離心率e=__________。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)已知
+
=1的焦點F
1、F
2,在直線l:x+y-6=0上找一點M,求以F
1、F
2為焦點,通過點M且長軸最短的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知焦點在
軸上,中心在坐標原點的橢圓C的離心率為
,且過點
(題干自編)
(I)求橢圓C的方程;
(II)直線
分別切橢圓C與圓
(其中
)于
兩點,求
的最大值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
經(jīng)過點
,一個焦點是
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)橢圓
與
軸的兩個交點為
、
,點
在直線
上,直線
、
分別與橢圓
交于
、
兩點.試問:當點
在直線
上運動時,直線
是否恒經(jīng)過定點
?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為坐標原點,
為橢圓
在
軸正半軸上的焦點,過
且斜率為
的直線
與
交與
、
兩點,點
滿足
(Ⅰ)小題1:證明:點
在
上;
(Ⅱ)小題2:設(shè)點
關(guān)于點
的對稱點為
,證明:
、
、
、
四點在同一圓上。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)
,橢圓方程為
,拋物線方程為
.如圖所示,過點
作
軸的平行線,與拋物線在第一象限的交點為
,已知拋物線在點
的切線經(jīng)過橢圓的右焦點
.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)
分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點
,使得
為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知焦點在y軸的橢圓
的離心率為
,則m= ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓經(jīng)過點(2,3),且焦點為
,則這個橢圓的離心率等于_________________:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在
中,∠ABC=450,∠ACB=600,
繞BC旋轉(zhuǎn)一周,記以AB為母線的圓錐為M1
,記以AC為母線的圓錐為M2,m是圓錐M1任一母線,則圓錐M2的母線中與m垂直的直線有 ▲ 條
查看答案和解析>>