9.在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn)x軸的正半軸為極軸建極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ-sinθ)=4,且與曲線C相交于A,B兩點(diǎn).
(Ⅰ)在直角坐標(biāo)系下求曲線C與直線l的普通方程;
(Ⅱ)求△AOB的面積.

分析 (Ⅰ)利用三種方程的轉(zhuǎn)化方法,求曲線C與直線l的普通方程;
(Ⅱ)求出|AB|,O到直線l的距離,即可求△AOB的面積.

解答 解:(Ⅰ)已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t為參數(shù)),消去參數(shù)得y2=4x,
直線l的極坐標(biāo)方程為ρ(cosθ-sinθ)=4,由x=ρcosθ,y=ρsinθ得普通方程為x-y-4=0;
(Ⅱ)已知拋物線y2=4x與直線x-y-4=0相交于A,B兩點(diǎn),
由$\left\{\begin{array}{l}{y^2}=4x\\ x-y-4=0\end{array}\right.$,得$|AB|=4\sqrt{10}$,O到直線l的距離$d=\frac{|0-0-4|}{{\sqrt{2}}}=2\sqrt{2}$,
所以△AOB的面積為$S=\frac{1}{2}×2\sqrt{2}×4\sqrt{10}=8\sqrt{5}$.

點(diǎn)評(píng) 本題考查三種方程的轉(zhuǎn)化,考查三角形面積的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點(diǎn)在直線l:$\sqrt{3}$x-y-3=0上,且橢圓上任意兩個(gè)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)與橢圓上任意一點(diǎn)的連線的斜率之積為-$\frac{1}{4}$.
(1)求橢圓C的方程;
(2)若直線t經(jīng)過點(diǎn)P(1,0),且與橢圓C有兩個(gè)交點(diǎn)A,B,是否存在直線l0:x=x0(其中x0>2)使得A,B到l0的距離dA,dB滿足$\frac{d_A}{d_B}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立?若存在,求出x0的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在射擊訓(xùn)練中,某戰(zhàn)士射擊了兩次,設(shè)命題p是“第一次射擊擊中目標(biāo)”,命題q是“第二次射擊擊中目標(biāo)”,則命題“兩次射擊中至少有一次沒有擊中目標(biāo)“為真命題的充要條件是( 。
A.(¬p)∨(¬q)為真命題B.p∨(¬q)為真命題C.(¬p)∧(¬q)為真命題D.p∨q為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}2a-x,x≤0\\{log_a}x,x>0\end{array}\right.$(a>0且a≠1),若f(f(1))=1,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,an>0,且4Sn=an(an+2).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{{({a_n}-1)({a_n}+1)}}$,Tn=b1+b2+…+bn,求證:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.公元263年左右,我國(guó)古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖.若運(yùn)行該程序,則輸出的n的值為:(參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)( 。
A.48B.36C.30D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列{an}滿足a1=1,(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,則a8=85.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=sin2xcos$\frac{3π}{5}-cos2xsin\frac{3π}{5}$.
(Ⅰ)求f(x)的最小正周期和對(duì)稱軸的方程;
(Ⅱ)求f(x)在區(qū)間$[0,\frac{π}{2}]$上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點(diǎn)F2,P分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點(diǎn)與右支上的一點(diǎn),O為坐標(biāo)原點(diǎn),若2$\overrightarrow{OM}=\overrightarrow{OP}+\overrightarrow{O{F_2}},|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,則該雙曲線的離心率為( 。
A.$2\sqrt{3}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案