3.已知圓C1:x2+y2=4和圓C2:x2+y2-6x+8y+16=0,則這兩個(gè)圓的公切線的條數(shù)為(  )
A.0B.1C.3D.4

分析 把兩圓的方程化為標(biāo)準(zhǔn)形式,求出圓心和半徑,根據(jù)兩圓的圓心距小于半徑之和,可得兩圓相交,由此可得兩圓的公切線的條數(shù).

解答 解:圓${C_1}:{x^2}+{y^2}=4$圓心為(0,0),半徑為r1=2,
圓${C_2}:{x^2}+{y^2}-6x+8y+16=0$變形為(x-3)2+(y+4)2=9,圓心為(3,-4),半徑為r2=3,
因此圓心距為d=5=r1+r2
所以兩圓相外切,共有3條公切線,
故選C:.

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程的特征,兩圓的位置關(guān)系的確定方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)的定義域?yàn)椋?1,1),則函數(shù)g(x)=f($\frac{x}{2}$)+f(x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-2,0)B.(-2,2)C.(0,2)D.(-$\frac{1}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.從集合$\left\{{2,3,4,\frac{2}{3}}\right\}$中取兩個(gè)不同的數(shù)a,b,則logab>0的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(log4x-1)(log2x-1).
(1)當(dāng)x∈[2,4]時(shí),求該函數(shù)的值域;
(2)若x∈[8,16]不等式$f(x)≥\frac{m}{{{{log}_4}x}}$恒成立,求m有取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若拋物線y2=2px(p>0)上橫坐標(biāo)為6的點(diǎn)到焦點(diǎn)的距離為8,則焦點(diǎn)到準(zhǔn)線的距離為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義集合A、B的一種運(yùn)算:A*B={x|x=x1•x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},則集合A*B的真子集個(gè)數(shù)為31個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=lnx+$\frac{1}{x}$+ax,x∈(0,+∞)(a為常數(shù)),若函數(shù)f(x)在[2,+∞)為單調(diào)函數(shù),則a的取值范圍為(-∞,-$\frac{1}{4}$]∪[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3lnx+ax3+b,(x>0)在x=1處取極值,其中a,b為常數(shù)
(1)求a的值
(2)若函數(shù)f(x)在區(qū)間$[\frac{1}{e},e]$上沒有零點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在正方體ABCD-A1B1C1D1中,F(xiàn)為線段BC1的中點(diǎn),E為直線A1C1上的動(dòng)點(diǎn),則下列結(jié)論中正確的為( 。
A.存在點(diǎn)E使EF∥BD1B.不存在點(diǎn)E使EF⊥平面AB1C1D
C.三棱錐B1-ACE的體積為定值D.EF與AD1不可能垂直

查看答案和解析>>

同步練習(xí)冊(cè)答案