分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(1)=0,求出a的值檢驗(yàn)即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出f(x)的范圍,解關(guān)于b的不等式,求出b的范圍即可.
解答 解:(1)f′(x)=3x2lnx+x2+3ax2,
由題意得:f′(1)=0,a=-$\frac{1}{3}$,
經(jīng)檢驗(yàn)符合題意,
故a=-$\frac{1}{3}$;
(2)f(x)=x3lnx-$\frac{1}{3}$x3+b,(x>0),
∴f′(x)=3x2lnx,
令f′(x)>0,解得:x>1,
令f′(x)<0,解得:x<1,
∴f(x)在($\frac{1}{e}$,1)遞減,在(1,e)遞增,
又f(1)=-$\frac{1}{3}$+b,f(e)=$\frac{{2e}^{3}}{3}$+b,
f($\frac{1}{e}$)=-$\frac{4}{{3e}^{3}}$+b,f(e)>f($\frac{1}{e}$),
∴x∈[$\frac{1}{e}$,e]時(shí),f(x)∈[-$\frac{1}{3}$+b,$\frac{{2e}^{3}}{3}$+b],
由題意得:-$\frac{1}{3}$+b>0或$\frac{{2e}^{3}}{3}$+b<0,
故b>$\frac{1}{3}$或b<-$\frac{{2e}^{3}}{3}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要非充分條件 | B. | 充分非必要條件 | ||
C. | 充要條件 | D. | 非充分非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{5}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com