13.已知函數(shù)f(x)=$\frac{2x+1}{x+1}$.
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(2)求該函數(shù)在區(qū)間[1,3]上的最大值與最小值.

分析 (1)利用函數(shù)的單調(diào)性的定義證明即可.
(2)通過(guò)函數(shù)的單調(diào)性,然后求解閉區(qū)間的函數(shù)的最值即可.

解答 解:(1)f(x)在[1,+∞)上是增函數(shù).             ….(1分)
證明如下:在[1,+∞)上任取x1,x2且x1<x2,那么$f({x_1})-f({x_2})=\frac{{2{x_1}+1}}{{{x_1}+1}}-\frac{{2{x_2}+1}}{{{x_2}+1}}$=$\frac{{2{x_1}{x_2}+{x_2}+2{x_1}+1-2{x_1}{x_2}-2{x_2}-{x_1}-1}}{{({x_1}+1)({x_2}+1)}}$=$\frac{{{x_1}-{x_2}}}{{({x_1}+1)({x_2}+1)}}$…..(5分)
因?yàn)閤1<x2,所以x1-x2<0
又x1≥1,x2≥1所以x1+1>0,x2+1>0
所以$\frac{{{x_1}-{x_2}}}{{({x_1}+1)({x_2}+1)}}<0$…..(7分)
即f(x1)-f(x2)<0,所以f(x1)<f(x2),
所以f(x)在[1,+∞)上是增函數(shù).                  …..(8分)
(2)因?yàn)閇1,3]⊆[1,+∞)且f(x)在[1,+∞)上是增函數(shù),
所以f(x)在[1,3]上是增函數(shù),
則$f{(x)_{max}}=f(3)=\frac{7}{4},f{(x)_{min}}=f(1)=\frac{3}{2}$.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的判斷與證明,單調(diào)性的應(yīng)用,函數(shù)的最值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)函數(shù)f(x)=|2x-1|的定義域和值域都是[a,b](b>a),則f(a)+f(b)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.下列命題中為真命題的有(1).
(1)命題“若α=β,則tanα=tanβ”的逆否命題為假命題;
(2)“x>1”是“x2-1>0”的必要不充分條件;
(3)“m>0>n”是$\frac{1}{m}$>$\frac{1}{|n|}$的充分不必要條件;
(4)命題“?a>1,a2+2a-3<0”的否定是:“?a≤1,a2+2a-3≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$  (t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox方向?yàn)闃O軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-$\frac{π}{4}$).
(1)求直線l的傾斜角和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),設(shè)點(diǎn)P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|x2=4},B={x|mx=4},若B⊆A,則實(shí)數(shù)m的所有值構(gòu)成的集合是( 。
A.{2}B.{-2}C.{-2,2}D.{-2,0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為(  )
A.2B.5$\sqrt{2}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.以下選項(xiàng)正確的是③④.
 ①方程y=kx+2可表示經(jīng)過(guò)點(diǎn)(0,2)的所有直線
②過(guò)點(diǎn)P(3,-4),且截距相等的直線方程為x+y-1=0
③函數(shù)y=$\sqrt{{x^2}+1}$+$\sqrt{{x^2}-4x+13}$的最小值為2$\sqrt{5}$
④若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段長(zhǎng)為2$\sqrt{2}$,則m的傾斜角可以是15°或75°
⑤點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線段的中點(diǎn)軌跡方程為(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(x)=Asin(ωx+φ),(A>0,ω>0,φ∈(0,π)),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則下列對(duì)f(x)的說(shuō)法正確的是(  )
A.最大值為4且關(guān)于直線$x=-\frac{π}{2}$對(duì)稱
B.最大值為4且在$[{-\frac{π}{2}\;\;,\;\;\frac{π}{2}}]$上單調(diào)遞增
C.最大值為2且關(guān)于點(diǎn)$({-\frac{π}{2}\;\;,\;\;0})$中心對(duì)稱
D.最大值為2且在$[{-\frac{π}{2}\;\;,\;\;\frac{3π}{2}}]$上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.30B.24C.12D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案