【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;
(2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,均值與方差都不變;
②設(shè)有一個回歸方程,變量x增加一個單位時,y平均增加3個單位;
③線性回歸方程必經(jīng)過點;
④在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有99%的把握認為吸煙與患肺病有關(guān)系時,我們說現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e誤的個數(shù)是( )
A. 0
B. 1
C. 2
D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-1,g(x)=
(1)求f[g(2)]和g[f(2)]的值;
(2)求f[g(x)]和g[f(x)]的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=log2x- (0<x<1),數(shù)列{an}滿足f(2an)=2n(n∈N*).
(1) 求數(shù)列{an}的通項公式;
(2) 判斷數(shù)列{an}的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
甲乙兩個班級進行一門課程的考試,按照學生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:
班級與成績列聯(lián)表
優(yōu) 秀 | 不優(yōu)秀 | |
甲 班 | 10 | 35 |
乙 班 | 7 | 38 |
根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為成績與班級有關(guān)系?
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在原點,一個焦點為,且長軸與短軸長的比是
(1)求橢圓C的方程;
(2)設(shè)點在 橢圓C的長軸上,點P是橢圓上任意一點,當最小時,點P恰好落在橢圓的右頂點上,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)(,,,)的圖象在點處的切線的斜率為,且函數(shù)為偶函數(shù).若函數(shù)滿足下列條件:①;②對一切實數(shù),不等式恒成立.
(1)求函數(shù)的表達式;
(2)設(shè)函數(shù)()的兩個極值點,()恰為的零點,當時,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com