分析 (1)n分別取2,3,4,5代入計(jì)算,即可求得結(jié)論;
(2)猜想an=$\sqrt{n}$-$\sqrt{n-1}$,n∈N*,用數(shù)學(xué)歸納法證明的關(guān)鍵是n=k+1時(shí),變形利用歸納假設(shè)
解答 解:(1)∵S2=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$)=a1+a2,即a22+2a2-1=0,解得a2=$\sqrt{2}$-1,
由S3=$\frac{1}{2}$(a3+$\frac{1}{{a}_{3}}$)=a1+a2+a3,即a32+2$\sqrt{2}$a3-1=0,解得a2=$\sqrt{3}$-$\sqrt{2}$,
同理可得a4=$\sqrt{4}$-$\sqrt{3}$,a5=$\sqrt{5}$-$\sqrt{4}$
(2)猜想an=$\sqrt{n}$-$\sqrt{n-1}$,n∈N*
下用數(shù)學(xué)歸納法證明:
①n=1時(shí),a1=1,滿足;
②假設(shè)當(dāng)n=k(k≥1)時(shí),結(jié)論成立,即ak=$\sqrt{k}$-$\sqrt{k-1}$,
此時(shí)Sk=$\frac{1}{2}$(ak+$\frac{1}{{a}_{k}}$)=$\frac{1}{2}$($\sqrt{k}$-$\sqrt{k-1}$+$\frac{1}{\sqrt{k}-\sqrt{k-1}}$)=$\sqrt{k}$
則當(dāng)n=k+1時(shí),Sk+1=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$),即Sk+ak+1=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$),
即2$\sqrt{k}$+2ak+1=ak+1+$\frac{1}{{a}_{k+1}}$,
整理得ak+12+2$\sqrt{k}$ak=1-1=0,解得a1=$\sqrt{k+1}$-$\sqrt{k}$
即當(dāng)n=k+1時(shí),結(jié)論也成立
由①②可知,an=$\sqrt{n}$-$\sqrt{n-1}$,n∈N*恒成立
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查數(shù)列的通項(xiàng),考查數(shù)學(xué)歸納法的運(yùn)用,掌握數(shù)學(xué)歸納法的證題步驟是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一定為等差數(shù)列 | B. | 一定為等比數(shù)列 | ||
C. | 既是等差數(shù)列,又是等比數(shù)列 | D. | 以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | 3 | C. | $2\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com