A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,先確定z=2x+y的最大值是9時,對應(yīng)的最優(yōu)解,進行求解即可.
解答 解:由z=2x+y得y=-2x+z,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z,過點A時,
直線y=-2z+z的截距最大,此時z最大,2x+y=9,
由$\left\{\begin{array}{l}{y=x}\\{2x+y=9}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,即A(3,3),
同時A也在直線y=a上,
∴a=3,
故選:B.
點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若d1=d2=1,則直線P1P2與直線l平行 | |
B. | 若d1=1,d2=-1,則直線P1P2與直線l垂直 | |
C. | 若d1+d2=0,則直線P1P2與直線l垂直 | |
D. | 若d1•d2≤0,則直線P1P2與直線l相交 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com