【題目】如圖,在四棱錐中,⊥底面,,,,點為棱的中點.

(1)(理科生做)證明:;

(文科生做)證明:;

(2)(理科生做)若為棱上一點,滿足,求二面角的余弦值.

(文科生做)求點到平面的距離.

【答案】(1)見解析(2)理,文

【解析】

(1)可通過以點為原點建立空間直角坐標系,然后確定四點的坐標,最后通過求得出;

(1)首先可證明四邊形是平行四邊形,再通過證明平面;

(2)先求出向量,然后求出平面和平面的法向量,最后求出二面角的余弦值;

(2)可通過等面積法求出點到平面的距離。

(1)依題意,以點為原點建立空間直角坐標系(如圖),

可得,

,

為棱的中點,

向量,故,

所以.

(1)中點聯(lián)接

因為中點,所以

所以,四邊形是平行四邊形

平面,平面,

所以平面

(2)向量,,,

由點在棱上,設,

,得,因此,解得,

,為平面的法向量,

,,

不妨令,可得平面的一個法向量.

取平面的法向量,則

,

易知,二面角是銳角,所以其余弦值為

(2)到平面距離為,

中, 因為,

所以平面,

所以,中,

將數(shù)據(jù)代入

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】用6種顏色給右圖四面體A﹣BCD的每條棱染色,要求每條棱只染一種顏色且共頂點的棱染不同的顏色,則不同的染色方法共有( )種.

A.4080
B.3360
C.1920
D.720

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中, , 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面交于點,則異面直線所成角的正切值為__________

【答案】

【解析】

延長的延長線與點Q,連接QEPA于點K,設QA=x,

,得,則,所以.

的中點為M,連接EM,則

所以,則,所以AK=.

AD//BC,得異面直線所成角即為,

則異面直線所成角的正切值為.

型】填空
結(jié)束】
17

【題目】在極坐標系中,極點為,已知曲線 與曲線 交于不同的兩點,

(1)求的值;

(2)求過點且與直線平行的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,點滿足,記點的軌跡為.

(1)求軌跡的方程;

(2)若直線過點且與軌跡交于、兩點.

(i)無論直線繞點怎樣轉(zhuǎn)動,在軸上總存在定點,使恒成立,求實數(shù)的值.

(ii)在(i)的條件下,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù),( ),若對任意,總存在,使得成立,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若的解集為,求的值;

(2)求函數(shù)上的最小值

(3)對于,使成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列命題:
①命題:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2x , 則x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+ ,則x0∈(0,+∞),f(x0)=1;
④等差數(shù)列{an}的前n項和為Sn , 若a4=3,則S7=21;
⑤在△ABC中,若A>B,則sinA>sinB.
其中真命題是 . (只填寫序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,建立平面直角坐標系,x軸在地平面上,y軸垂直于地平面,單位長度為1 km,某炮位于原點.已知炮彈發(fā)射后的軌跡在方程ykx (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.則炮的最大射程為(  )

A. 20 km B. 10 km

C. 5 km D. 15 km

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)f(x)=ax-2.

(1)當a=3時,解不等式|f(x)|<4;

(2)解關于x的不等式|f(x)|<4;

(3)若關于x的不等式|f(x)|≤3對任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案