【題目】在平面直角坐標系中,已知圓經(jīng)過,,三點,是線段上的動點,,是過點且互相垂直的兩條直線,其中軸于點,交圓、兩點.

(1)若,求直線的方程;

(2)若是使恒成立的最小正整數(shù),求三角形的面積的最小值.

【答案】(1) (2)

【解析】

1)求出圓心與半徑,設(shè)方程為:,因為,則直線到圓心的距離,即可求直線 的方程.

2)設(shè),由點在線段上,得,因為,所以.

依題意知,線段與圓至多有一個公共點,所以,由此入手求得三角形的面積的最小值

解:(1)由題意可知,圓的直徑為,所以圓方程為:.

設(shè)方程為:,則,解得,

時,直線軸無交點,不合,舍去.

所以,此時直線的方程為.

(2)設(shè),由點在線段上,得,即.

,得.

依題意知,線段與圓至多有一個公共點,

,解得.

因為是使恒成立的最小正整數(shù),所以.

所以圓方程為:

(i) 當直線時,直線的方程為,此時,

(ii) 當直線的斜率存在時,

設(shè)的方程為:,則的方程為:,點.

所以 .

又圓心的距離為,所以

因為,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對任意的,滿足,其中為常數(shù).

(1)若的圖象在處的切線經(jīng)過點,求的值;

(2)已知,求證;

(3)當存在三個不同的零點時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知x0= 是函數(shù)f(x)=sin(2x+φ)的一個極大值點,則f(x)的一個單調(diào)遞減區(qū)間是(
A.(
B.( ,
C.( ,π)
D.( ,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣mx(m∈R). (Ⅰ)當m=0時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當b>a>0時,總有 >1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正四面體D﹣ABC(所有棱長均相等的三棱錐),P、Q、R分別為AB、BC、CA上的點,AP=PB, = =2,分別記二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角為α、β、γ,則( )

A.γ<α<β
B.α<γ<β
C.α<β<γ
D.β<γ<α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用,如左下圖.假定在水流量穩(wěn)定的情況下,半徑為3m的筒車上的每一個盛水桶都按逆時針方向作角速度為rad/min的勻速圓周運動,平面示意圖如右下圖,己知筒車中心O到水面BC的距離為2m,初始時刻其中一個盛水筒位于點P0處,且∠P0OAOA//BC),則8min后該盛水筒到水面的距離為____m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,ABBCDAC的中點,O為四邊形B1C1CB的對角線的交點,ACBC1.求證:

(1)OD∥平面A1ABB1

(2)平面A1C1CA⊥平面BC1D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三個內(nèi)角的度數(shù)可以構(gòu)成等差數(shù)列”是“中有一個內(nèi)角為”的( 。

A. 充分不必要條件B. 必要不充分條件

C. 充要條件D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個底面水平放置的倒圓錐形容器,它的軸截面是正三角形,容器內(nèi)有一定量的水,水深為. 若在容器內(nèi)放入一個半徑為 1 的鐵球后,水面所在的平面恰好經(jīng)過鐵球的球心(水沒有溢出),則的值為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案