若a∈(0,
π
2
),方程x2sina+y2cosa=1表示焦點在x軸上的橢圓,則a的取值范圍是
 
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:a∈(0,
π
2
)
,可得sina,cosa∈(0,1).因此方程x2sina+y2cosa=1化為
x2
1
sina
+
y2
1
cosa
=1
,此方程表示表示焦點在x軸上的橢圓,可得
1
sina
1
cosa
>0
,
解出即可.
解答: 解:∵a∈(0,
π
2
)
,∴sina,cosa∈(0,1).
方程x2sina+y2cosa=1化為
x2
1
sina
+
y2
1
cosa
=1
,
∵此方程表示表示焦點在x軸上的橢圓,
1
sina
1
cosa
>0
,
∴cosa>sina,
a∈(0,
π
4
)

故答案為:(0,
π
4
)
點評:本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、三角函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,半圓的直徑AB=6,C是半圓上的一點,D、E分別是AB、BC上的點,且AD=1,BE=4,DE=3.
(1)求證:
AC
DE
;
(2)求|
AC
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知b為如圖所示的程序框圖輸出的結(jié)果,則二項式(
bx
-
1
x
6的展開式中的常數(shù)項是( 。
A、-20B、20
C、-540D、540

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A≠∅,且A∩B=∅,則B=∅.
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點D、E分別在邊AB、AC上,
|AD|
|AB|
=
1
3
,
|AE|
|AC|
=
1
4
,BE與CD交于點P,且
AB
=
a
,
AC
=
b
,用
a
,
b
表示
AP
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:由五個直角邊為
2
的等腰直角三角形拼成如圖所示的平面凹五邊形ACDEF,沿AD折起,使平面ADEF⊥平面ACD.

(1)求證:FB⊥AD;
(2)求二面角C-EF-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l截圓x2+y2-2y=0所得弦AB的中點是(-
1
2
,
3
2
),則直線l的方程為
 
,|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的圓心為(0,2),半徑為3,則圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosx-(1-2sin2x)(sin4x-cos4x).
(1)求f(x)的值域;
(2)若x∈[0,π],求方程f(x)=1的解.

查看答案和解析>>

同步練習(xí)冊答案