【題目】已知是雙曲線的右焦點,左支上一點,),當周長最小時,則點的縱坐標為( 。

A. B. C. D.

【答案】B

【解析】

左焦點E-3,0),△APF周長最小|PA|+|PF|最小|PA|+|PE|+2最小P在線段AE上.

如圖:

由雙曲線C的方程可知:a2=1,b2=8,∴c2=a2+b2=1+8=9,∴c=3,∴左焦點E-3,0),右焦點F3,0),

|AF|=,所以當三角形APF的周長最小時,|PA|+|PF|最。

由雙曲線的性質得|PF|-|PE|=2a=2,∴|PF|=|PE|+2,

|PE|+|PA|≥|AE|=|AF|=15,當且僅當A,P,E三點共線時,等號成立.

∴三角形APF的周長:|AF|+|AP|+|PF|=15+|PE|+|AP|+2≥15+15+2=32

此時,直線AE的方程為y=,將其代入到雙曲線方程得:x2+9x+14=0,

解得x=-7(舍)或x=-2

x=-2y=2(負值已舍)

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向左平移1個單位,再向下平移1個單位得到函數(shù),則函數(shù)的圖象與函數(shù)圖象所有交點的橫坐標之和等于(

A.12B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在極坐標系中,曲線的極坐標方程是,以極點為原點,極軸為軸正半軸(兩坐標系取相同的單位長度)的直角坐標系中,曲線的參數(shù)方程為: 為參數(shù)).

(1)求曲線的直角坐標方程與曲線的普通方程;

(2)將曲線經過伸縮變換后得到曲線,若, 分別是曲線和曲線上的動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中常數(shù)

1)當時,求函數(shù)的單調遞增區(qū)間;

2)設定義在上的函數(shù)在點處的切線方程為,若內恒成立,則稱為函數(shù)類對稱點,當時,試問是否存在類對稱點,若存在,請至少求出一個類對稱點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的極值;

2)當時,討論的單調性;

3)若對任意的,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某地區(qū)中小學生人數(shù)和近視情況如圖1和圖2所示.為了解該地區(qū)中小學生的近視形成原因,用分層抽樣的方法抽取2%的學生作為樣本進行調查.

(1)求樣本容量和抽取的高中生近視人數(shù)分別是多少?

(2)在抽取的名高中生中,平均每天學習時間超過9小時的人數(shù)為,其中有12名學生近視,請完成高中生平均每天學習時間與近視的列聯(lián)表:

平均學習時間不超過9小時

平均學習時間超過9小時

總計

不近視

近視

總計

(3)根據(2)中的列聯(lián)表,判斷是否有的把握認為高中生平均每天學習時間與近視有關?

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程分別為,.

(1)將直線的參數(shù)方程化為極坐標方程,將的極坐標方程化為參數(shù)方程;

(2)當時,直線交于,兩點,與交于,兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】漢代數(shù)學家趙爽在注解《周髀算經》時給出的“趙爽弦圖”(如下圖),四個全等的直角三角形(朱實),可以圍成一個大的正方形,中空部分為一個小正方形(黃實).若直角三角形中一條較長的直角邊為8,直角三角形的面積為24,若在上面扔一顆玻璃小球,則小球落在黃實區(qū)域的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為實數(shù).

(1)若曲線在點處的切線方程為,試求函數(shù)的單調區(qū)間;

(2)當,,且時,若恒有,試求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案