12.在△ABC中,若$4πsinA-3arccos(-\frac{1}{2})=0$,則A=$\frac{π}{6}$或$\frac{5π}{6}$.

分析 利用反三角函數(shù)化簡,可得sinA=$\frac{1}{2}$,即可得出結(jié)論.

解答 解:∵$4πsinA-3arccos(-\frac{1}{2})=0$,
∴4πsinA-3×$\frac{2π}{3}$=0,
∴sinA=$\frac{1}{2}$,
∵0<A<π,
∴A=$\frac{π}{6}$或$\frac{5π}{6}$,
故答案為$\frac{π}{6}$或$\frac{5π}{6}$.

點(diǎn)評 本題考查反三角函數(shù),考查特殊角三角函數(shù),比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知動點(diǎn)P在曲線2y2-x=0上移動,則點(diǎn)A(-2,0)與點(diǎn)P連線中點(diǎn)的軌跡方程是(  )
A.y=2x2B.y=8x2C.x=4y2-1D.y=4x2-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知曲線y=f(x)在x=5處的切線方程是y=-2x+8,則f(5)與f′(5)分別為(  )
A.3,3B.3,-1C.-1,3D.-2,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等差數(shù)列{an}中,a1+a2=7,a3=8.令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$.求數(shù)列{an}的通項公式以及數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$cos({α-\frac{π}{3}})=\frac{3}{4}$,則$sin({α+\frac{7π}{6}})$的值為-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC中,滿足b=2,B=60°的三角形有兩解,則邊長a的取值范圍是( 。
A.$\frac{\sqrt{3}}{2}$<a<2B.$\frac{1}{2}$<a<2C.2<a<$\frac{4\sqrt{3}}{3}$D.2<a<2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖1,在矩形ABCD中,AB=2BC,E、F分別是AB、CD的中點(diǎn),現(xiàn)在沿EF把這個矩形折成一個直二面角A-EF-C(如圖2),則在圖2中直線AF與平面EBCF所成的角的大小為45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:f(α)=$\frac{sin(4π-α)cos(π-α)cos(\frac{3π}{2}+α)cos(\frac{7π}{2}-α)}{cos(π+α)sin(2π-α)sin(π+α)sin(\frac{9π}{2}-α)}$
(1)化簡 f(α)          
(2)求f(-$\frac{31}{6}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知對k∈R,直線y-kx-1=0與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1恒有公共點(diǎn),則實數(shù)m的取值范圍( 。
A.(1,4]B.[1,4)C.[1,4)∪(4,+∞)D.(4,+∞)

查看答案和解析>>

同步練習(xí)冊答案