10.某班對(duì)一次實(shí)驗(yàn)成績進(jìn)行分析,利用隨機(jī)數(shù)表法抽取樣本時(shí),先將50個(gè)同學(xué)按01,02,03…50進(jìn)行編號(hào),然后從隨機(jī)數(shù)表第9行第11列的數(shù)開始向右讀,則選出的第7個(gè)個(gè)體是(  )
(注:表為隨機(jī)數(shù)表的第8行和第9行)
A.02B.13C.42D.44

分析 從隨機(jī)數(shù)表找到第9行第9列數(shù)開始向右讀,符合條件的是07,42,44,38,15,13,02,問題得以解決.

解答 解:找到第9行第11列數(shù)開始向右讀,符合條件的是07,42,44,38,15,13,02,
故選出的第7個(gè)個(gè)體是02,
故選:A.

點(diǎn)評(píng) 本題考查隨機(jī)數(shù)表的應(yīng)用,抽樣方法中隨機(jī)數(shù)表的使用,考生不要忽略,在隨機(jī)數(shù)表中每個(gè)數(shù)出現(xiàn)在每個(gè)位置的概率是一樣的,所以每個(gè)數(shù)被抽到的概率是一樣的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)定義在(0,+∞)的函數(shù)f(x)的導(dǎo)函數(shù)是f'(x),且x4f'(x)+3x3f(x)=ex,$f(3)=\frac{e^3}{81}$,則x>0時(shí),f(x)( 。
A.有極大值,無極小值B.有極小值,無極大值
C.既無極大值,又無極小值D.既有極大值,又有極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.S=$\frac{1}{1×3}+\frac{1}{2×4}+\frac{1}{3×5}+…+\frac{1}{20×22}$=$\frac{325}{462}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)是奇函數(shù),且滿足f(x+2)=f(x),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),則f(-$\frac{9}{2}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,PA⊥平面ABCD,底面ABCD為矩形,AE⊥PB于E,AF⊥PC于F
(1)求證:PC⊥面AEF;
(2)設(shè)平面AEF交PD于G,求證:AG⊥PD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.$2{log_5}10+{log_5}\frac{1}{4}+{2^{{{log}_4}3}}$=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=loga(2-ax)(a>0,a≠1).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;
(2)若g(x)=f(x)-loga(2+ax),判斷g(x)的奇偶性;
(3)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[2,3]遞增,并且最大值為1,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$e=\frac{1}{2}$,且與y軸的正半軸的交點(diǎn)為$(0,2\sqrt{3})$,拋物線C2的頂點(diǎn)在原點(diǎn)且焦點(diǎn)為橢圓C1的左焦點(diǎn).
(1)求橢圓C1與拋物線C2的標(biāo)準(zhǔn)方程;
(2)過(1,0)的兩條相互垂直直線與拋物線C2有四個(gè)交點(diǎn),求這四個(gè)點(diǎn)圍成四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在多面體ABCDEF中,四邊形ABCD是邊長為3的正方形,EF∥AB,EF=$\frac{3}{2}$,且點(diǎn)E到平面ABCD的距離為2,則該多面體的體積為( 。
A.$\frac{9}{2}$B.5C.6D.$\frac{15}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案