【題目】已知函數(shù)f(x)=lnx+ax2+x(a∈R).
(1)若函數(shù)f(x)在x=1處的切線平行于x軸,求實數(shù)a的值,并求此時函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.
【答案】
(1)解:函數(shù)f(x)=lnx+ax2+x的定義域為(0,+∞),f′(x)= +2ax+1,
依題意有f′(1)=1+2a+1=0,解得a=﹣1.
此時,f′(x)= ,∴當(dāng)0<x<1時,f′(x)>0,當(dāng)x>1時,f′(x)<0,
∴函數(shù)f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù),
∴當(dāng)x=1時,函數(shù)f(x)取得極大值,極大值為0
(2)解:因為f′(x)= ,
(ⅰ)當(dāng)a≥0時,因為x∈(0,+∞),所以f′(x)= >0,此時函數(shù)f(x)在(0+∞)是增函數(shù).
(ⅱ)當(dāng)a<0時,令f′(x)=0,則2ax2+x=1=0.因為△=1﹣8a>0,
此時,f′(x)= = ,
其中,x1=﹣ ,x2=﹣ .
因為a<0,所以 x2>0,又因為 x1x2= <0,所以x1<0.
∴當(dāng)0<x1<x2時,f′(x)>0,當(dāng)x1>x2時,f′(x)<0,
∴函數(shù)f(x)在(0,x2)上是增函數(shù),在(x2,+∞)上是減函數(shù).
綜上可知,當(dāng)a≥0時,函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,+∞);
當(dāng)a<0時,函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,﹣ ),單調(diào)遞減區(qū)間是(﹣ ,+∞)
【解析】(1)由條件求得f′(x),再根據(jù)有f′(1)=0,求得a的值.(2)由條件求得f′(x),分類討論、利用導(dǎo)數(shù)的符號求粗函數(shù)的單調(diào)區(qū)間.
【考點精析】通過靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的離心率e= ,并且經(jīng)過定點P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點,滿足OA⊥OB,若存在求m值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(n)=1+ + +…+ (n∈N*),計算得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,由此推算:當(dāng)n≥2時,有( )
A.f(2n)> (n∈N*)
B.f(2n)> (n∈N*)
C.f(2n)> (n∈N*)
D.f(2n)> (n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且對任意的n∈N*都有Sn=2an﹣n,
(1)求數(shù)列{an}的前三項a1 , a2 , a3;
(2)猜想數(shù)列{an}的通項公式an , 并用數(shù)學(xué)歸納法證明;
(3)求證:對任意n∈N*都有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+(y﹣2)2=25,直線l:(2m+1)x+(m+1)y﹣7m﹣4=0.
(1)求證:直線l恒過定點;
(2)求直線l被圓C截得的弦長最長與最短的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A. 和
B.y=|1﹣x|和
C. 和y=x+1
D.y=x0和y=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在四棱錐P﹣ABCD中,底面ABCD是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,設(shè)E、F分別為PC、BD的中點.
(1)求證:EF∥平面PAD;
(2)求證:面PAB⊥平面PDC;
(3)求二面角B﹣PD﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=2,BC=2 ,M,N分別是CC1 , BC的中點,點P在直線A1B1上,且 .
(1)證明:無論λ取何值,總有AM⊥PN;
(2)當(dāng)λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com