已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當(dāng)時(shí),函數(shù)的值域是,求實(shí)數(shù)與的值;
(1)為奇函數(shù)。 (2)當(dāng)時(shí),在上是減函數(shù).當(dāng)時(shí),在上是增函數(shù). (3),.
【解析】
試題分析:(1)由得函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102123203491015908/SYS201310212321254811238841_DA.files/image008.png">, 2分
又
所以為奇函數(shù)。 4分
(2)由(1)及題設(shè)知:,設(shè),
∴當(dāng)時(shí), ∴. 6分
當(dāng)時(shí),,即.
∴當(dāng)時(shí),在上是減函數(shù).
同理當(dāng)時(shí),在上是增函數(shù). 8分
(3)①當(dāng)時(shí),有.
由(2)可知:在為增函數(shù), 9分
由其值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102123203491015908/SYS201310212321254811238841_DA.files/image003.png">知 ,無解 10分
②當(dāng)時(shí),有.由(2)知:在為減函數(shù),
由其值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102123203491015908/SYS201310212321254811238841_DA.files/image003.png">知 11分
得,. 12分
考點(diǎn):本題考查了函數(shù)的性質(zhì)
點(diǎn)評:偶函數(shù)在關(guān)于原點(diǎn)對稱的兩個(gè)區(qū)間上的單調(diào)性相反,而奇函數(shù)在關(guān)于原點(diǎn)對稱的兩個(gè)區(qū)間上的單調(diào)性相同
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
ln(2-x2) |
|x+2|-2 |
AB |
AD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1-xp |
1+λxp |
1 |
p |
1 |
n |
n |
i=1 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(江西卷解析版) 題型:解答題
若函數(shù)h(x)滿足
(1)h(0)=1,h(1)=0;
(2)對任意,有h(h(a))=a;
(3)在(0,1)上單調(diào)遞減。則稱h(x)為補(bǔ)函數(shù)。已知函數(shù)
(1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;
(2)若存在,使得h(m)=m,若m是函數(shù)h(x)的中介元,記時(shí)h(x)的中介元為xn,且,若對任意的,都有Sn< ,求的取值范圍;
(3)當(dāng)=0,時(shí),函數(shù)y= h(x)的圖像總在直線y=1-x的上方,求P的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com