如圖,四邊形ABCD與BDEf均為菱形,已知∠DAB=∠DBF=60°,且面ABCD⊥面BDEF,AC=2
3

(1)求證:OF⊥平面ABCD;
(2)求二面角F-BC-D的正切值.
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線(xiàn)與平面垂直的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:(1)由已知條件推導(dǎo)出AC⊥BD,OF⊥BD,由此能夠證明OF⊥平面ABCD.
(2)過(guò)O作OH⊥BC于H,連結(jié)HF,由三垂線(xiàn)定理知∠FHO為二面角F-BC-D的平面角,由此能求出二面角F-BC-D的正切值.
解答: (1)證明:∵面ABCD⊥面BDEF且交于BD,四邊形ABCD為菱形,
∴AC⊥BD,又∵∠DAB=60°,AC=2
3

∴OB=1,BD=2=BF,又∵∠DBF=60°,
∴OF=
3
,∠FOB=90°,∴OF⊥BD,
∴OF⊥平面ABCD.
(2)解:∵OF⊥平面ABCD,過(guò)O作OH⊥BC于H,連結(jié)HF,
∴由三垂線(xiàn)定理知∠FHO為二面角F-BC-D的平面角,
又∵OF=
3
,OH=
3
2
,∴tan∠OHF=2,
∴二面角F-BC-D的正切值為2.
點(diǎn)評(píng):本題考查直線(xiàn)與平面垂直的證明,考查二面角的正切值的求法,解題時(shí)要合理地化空間問(wèn)題為平面問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下三個(gè)關(guān)于x的不等式:①x2-4x+3<0,②
3
x+1
>1
,③2x2+m2x+m<0.若③的解集非空,且滿(mǎn)足③的x至少滿(mǎn)足①和②中的一個(gè),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x2+
1
x
(x≤-
1
2
)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建坐標(biāo)系,已知曲線(xiàn)C:ρsin2θ=2acosθ(a>0),已知過(guò)點(diǎn)P(-2,-4)的直線(xiàn)l的參數(shù)方程為
x=-2+t
y=-4+t
,直線(xiàn)l與曲線(xiàn)C分別交于M,N.
(1)寫(xiě)出曲線(xiàn)C和直線(xiàn)l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圖示是一個(gè)幾何體的直觀(guān)圖,畫(huà)出它的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}和{bn}滿(mǎn)足:an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,且a1=1,b1=2,a2=3,求通項(xiàng)an,bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)a、b∈R且a+b≠0時(shí),總有[f(a)+f(b)](a+b)>0成立.
(1)若a>b,比較f(a)與f(b)的大;
(2)若關(guān)于x的不等式f(m×2x)+f(2x-4x+m)<0對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,底面ABCD是一直角梯,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD與底面成30°角.
(1)若AE⊥PD,E為垂足,求證:BE⊥PD;
(2)在(1)的條件下,求異面直線(xiàn)AE與CD所成角的余弦值;
(3)求平面PAB與平面PCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a、b、x、y都是正數(shù),且x+y=a+b.求證:
a2
a+x
+
b2
b+y
a+b
2
.(用柯西不等式證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案