1.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,
∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(1)證明:異面直線AE與PD所的角;
(2)若PD與平面ABCD所成角為45°,求二面角E-AF-C的余弦值.

分析 (1)推導(dǎo)出AE⊥BC,AE⊥AD,PA⊥AE,從而AE⊥平面PAD,由此能證明AE⊥PD.
(2)法一(幾何法):設(shè)AB=2,過E作EO⊥AC于O,則EO⊥平面PAC,過O作OS⊥AF于S,連接ES,則∠ESO為二面角E-AF-C的平面角,由此能求出二面角E-AF-C的余弦值.
法二(向量法):設(shè)AB=2,由AE,AD,AP兩兩垂直,以A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,利用向量法能求出二面角E-AF-C的余弦值.

解答 證明:(1)由四邊形ABCD為菱形,∠ABC=60°,
可得△ABC為正三角形.因?yàn)镋為BC的中點(diǎn),所以AE⊥BC.
又BC∥AD,因此AE⊥AD.
因?yàn)镻A⊥平面ABCD,AE?平面ABCD,所以PA⊥AE.
而PA?平面PAD,AD?平面PAD,且PA∩AD=A,
所以AE⊥平面PAD.又PD?平面PAD,
所以AE⊥PD.…(6分)
解:(2)因?yàn)镻A⊥平面ABCD,所以PD與底面ABCD所成的角為∠PDA,
因?yàn)椤螾DA=45°,所以PA=AD.…(9分)
解法一:設(shè)AB=2,因?yàn)镻A⊥平面ABCD,PA?平面PAC,
所以平面PAC⊥平面ABCD.過E作EO⊥AC于O,則EO⊥平面PAC,
過O作OS⊥AF于S,連接ES,則∠ESO為二面角E-AF-C的平面角,
在Rt△AOE中,EO=AEsin30°=$\frac{\sqrt{3}}{2}$,AO=AEcos30°=$\frac{3}{2}$,
又F是PC的中點(diǎn),在Rt△ASO中,$SO=AO•sin{45°}=\frac{{3\sqrt{2}}}{4}$,
又SE=$\sqrt{E{O}^{2}+S{O}^{2}}$=$\sqrt{\frac{3}{4}+\frac{9}{8}}$=$\frac{\sqrt{30}}{4}$,
在Rt△ESO中,cos∠ESO=$\frac{SO}{SE}=\frac{\frac{3\sqrt{2}}{4}}{\frac{\sqrt{30}}{4}}$=$\frac{\sqrt{15}}{5}$,
即所求二面角的余弦值為$\frac{\sqrt{15}}{5}$.…(12分)
解法二:設(shè)AB=2,由(Ⅰ)知AE,AD,AP兩兩垂直,以A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
又E,F(xiàn)分別為BC,PC的中點(diǎn),
所以A(0,0,0),B($\sqrt{3},-1,0$),C($\sqrt{3},1,0$),D(0,2,0),P(0,0,2),
E($\sqrt{3},0,0$),F(xiàn)($\frac{\sqrt{3}}{2},\frac{1}{2},1$),
所以$\overrightarrow{AE}=(\sqrt{3},0,0),\overrightarrow{AF}=({\frac{{\sqrt{3}}}{2},\frac{1}{2},1})$.
設(shè)平面AEF的一法向量為m=(x1,y1,z1),
則$\left\{\begin{array}{l}m•\overrightarrow{AE}=0\\ m•\overrightarrow{AF}=0\end{array}\right.$因此$\left\{\begin{array}{l}\sqrt{3}{x_1}=0\\ \frac{{\sqrt{3}}}{2}{x_1}+\frac{1}{2}{y_1}+{z_1}=0\end{array}\right.$,
取z1=-1,則m=(0,2,-1),因?yàn)锽D⊥AC,BD⊥PA,PA∩AC=A,
所以BD⊥平面AFC,故$\overrightarrow{BD}$為平面AFC的一個(gè)法向量.
又$\overrightarrow{BD}$=(-$\sqrt{3},3,0$),所以cos<$\overrightarrow{m},\overrightarrow{BD}$>=$\frac{\overrightarrow{m}•\overrightarrow{BD}}{|\overrightarrow{m}|•|\overrightarrow{BD}|}$=$\frac{2×3}{\sqrt{5}×\sqrt{12}}$=$\frac{\sqrt{15}}{5}$.
因?yàn)槎娼荅-AF-C為銳角,所以所求二面角的余弦值為$\frac{\sqrt{15}}{5}$.…(12分)

點(diǎn)評 本題考查線線垂直的證明,考查二面角的余弦值的求法,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查等價(jià)轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|2x-a|-|x-1|.
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)存在x∈[0,2]時(shí),使得不等式f(x)≤0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,四邊形ABCD為矩形,平面PCD⊥平面ABCD,且PC=PD=CD=2,BC=2$\sqrt{2}$,O,M分別為CD,BC的中點(diǎn),則異面直線OM與PD所成角的余弦值為( 。
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2-(2a-1)x-lnx.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a<0時(shí),求函數(shù)f(x)在$[{\frac{1}{2},1}]$上的最小值;
(3)記函數(shù)y=f(x)的圖象為曲線C,設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過點(diǎn)M作x軸的垂直交曲線C于點(diǎn)N,判斷曲線C在點(diǎn)N處的切線是否平行于直線AB,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=|{x-a}|+\frac{1}{2a}({a≠0})$
(1)若不等式f(x)-f(x+m)≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a<$\frac{1}{2}$時(shí),函數(shù)g(x)=f(x)+|2x-1|有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=(an-1)(an+2).
(1)求證:不論λ取何值,數(shù)列{an+λan+1}總是等差數(shù)列,并求此數(shù)列的公差;
(2)設(shè)數(shù)列$\{\frac{{(n-1)•{2^n}}}{{n{a_n}}}\}$的前n項(xiàng)和為Tn,試比較Tn與$\frac{{{2^{n+1}}(18-n)-2n-2}}{n+1}$的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{{sinx\sqrt{1-|x|}}}{{|{x+2}|-2}}$的奇偶性是( 。
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某校為了了解1200名學(xué)生對高效課堂試驗(yàn)的意見,打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為( 。
A.30B.25C.20D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.小明同學(xué)在寒假社會(huì)實(shí)踐活動(dòng)中,對白天平均氣溫與某家奶茶店的A品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫x(°C)與該奶茶店的A品牌飲料銷量y(杯),得到如下表數(shù)據(jù):
日期1月11日1月12日1月13日1月14日1月15日
平均氣溫x(℃)91012118
銷量y(杯)2325302621
(Ⅰ)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組書記恰好是相鄰2天數(shù)據(jù)的概率;
(Ⅱ)請根據(jù)所給五組書記,求出y關(guān)于x的線性回歸方程式$\widehaty=\widehatbx+\widehata$.
(Ⅲ)根據(jù)(Ⅱ)所得的線性回歸方程,若天氣預(yù)報(bào)1月16號(hào)的白天平均氣溫為7(℃),請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x)

查看答案和解析>>

同步練習(xí)冊答案