【題目】將函數(shù) 的圖象向左平移 個周期后,所得圖象對應(yīng)的函數(shù)g(x)的一個單調(diào)增區(qū)間為( )
A.[0,π]
B.
C.
D.[﹣π,0]
【答案】B
【解析】解:∵函數(shù) 的最小正周期為 =π,故將函數(shù) 的圖象向左平移 個周期后, 所得圖象對應(yīng)的函數(shù)g(x)=sin(2x+2 + )=cos2x,令2kπ﹣π≤2x≤2kπ,求得kπ﹣ ≤x≤kπ,
可得函數(shù)g(x)的單調(diào)增區(qū)間為[kπ﹣ ,kπ],k∈Z.
令k=0,可得g(x)的一個單調(diào)增區(qū)間為[﹣ ,0],
故選:B.
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若y=|3sin(ωx+ )+2|的圖象向右平移 個單位后與自身重合,且y=tanωx的一個對稱中心為( ,0),則ω的最小正值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了各個城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)研機(jī)構(gòu)在該市隨機(jī)抽取了位市民進(jìn)行調(diào)查,得到的列聯(lián)表(單位:人)
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認(rèn)為使用共享單車的情況與年齡有關(guān)?(結(jié)果保留3位小數(shù))
(2)現(xiàn)從所抽取的歲以上的市民中利用分層抽樣的方法再抽取5人
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機(jī)抽取2人贈送一件禮物,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)= ﹣1. (Ⅰ)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(Ⅱ)若f(x)在[1,e]上的最小值為 ,求a的值;
(Ⅲ)當(dāng)a=0時(shí),若x≥1時(shí),恒有xf(x)≤λ[g(x)+x]成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費(fèi)的顧客,按200元/次收費(fèi),并注冊成為會員,對會員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如表:
消費(fèi)次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收費(fèi)比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
該公司從注冊的會員中,隨機(jī)抽取了100位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如表:
消費(fèi)次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
頻數(shù) | 60 | 20 | 10 | 5 | 5 |
假設(shè)汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計(jì)該公司一位會員至少消費(fèi)兩次的概率;
(2)某會員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤;
(3)設(shè)該公司從至少消費(fèi)兩次,求這的顧客消費(fèi)次數(shù)用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀(jì)念品,求抽出2人中恰有1人消費(fèi)兩次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)是否存在過點(diǎn)的直線交橢圓與不同的兩點(diǎn),且滿足 (其中為坐標(biāo)原點(diǎn))。若存在,求出直線的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有高一、高二、高三三個年級,已知高一、高二、高三的學(xué)生數(shù)之比為2:3;5,現(xiàn)從該學(xué)校中抽取一個容量為100的樣本,從高一學(xué)生中用簡單隨機(jī)抽樣抽取樣本時(shí),學(xué)生甲被抽到的概率為 ,則該學(xué)校學(xué)生的總數(shù)為( )
A.200
B.400
C.500
D.1000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)賣場對市民進(jìn)行國產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取100名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如下:
分組(歲) | 頻數(shù) |
[25,30) | x |
[30,35) | y |
[35,40) | 35 |
[40,45) | 30 |
[45,50] | 10 |
合計(jì) | 100 |
(Ⅰ)求頻率分布表中x、y的值,并補(bǔ)全頻率分布直方圖;
(Ⅱ)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加國產(chǎn)手機(jī)用戶體驗(yàn)問卷調(diào)查,現(xiàn)從這20人重隨機(jī)抽取2人各贈送精美禮品一份,設(shè)這2名市民中年齡在[35,40)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com