【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,其傾斜角為.
(Ⅰ)證明直線恒過定點(diǎn),并寫出直線的參數(shù)方程;
(Ⅱ)在(Ⅰ)的條件下,若直線與曲線交于,兩點(diǎn),求的值.
【答案】(Ⅰ)證明見解析,(是參數(shù));(Ⅱ).
【解析】
(1)利用極坐標(biāo)與直角坐標(biāo)的互化將直線方程化為普通方程,從而可求出定點(diǎn),再將直線方程寫成參數(shù)方程的形式即可.
(2)將曲線化為直角坐標(biāo)方程,再將直線的參數(shù)方程代入曲線方程,整理成關(guān)于的一元二次方程的形式,利用韋達(dá)定理以及參數(shù)的幾何意義即可求解.
(Ⅰ)由極坐標(biāo)與直角坐標(biāo)互化公式
可得直線的方程為:,即
故直線恒過定點(diǎn)
所以直線的參數(shù)方程為(是參數(shù))
(Ⅱ)由曲線的參數(shù)方程(是參數(shù))
得曲線的普通方程:,即
將代入上式整理得:
設(shè)兩根為,則
由兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,故
故的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題,其中正確的是( )
A.對(duì)分類變量與的隨機(jī)變量的觀測值來說,越小,“與有關(guān)系”可信程度越大
B.殘差點(diǎn)比較均勻地落在水平帶狀區(qū)域內(nèi),帶狀區(qū)域越窄,則模型擬合精度越高
C.相關(guān)指數(shù)越小,則殘差平方和越大,模型的擬合效果越好
D.兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的最大值;
(2)若存在正實(shí)數(shù)對(duì),使得當(dāng)時(shí),能成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)黨的十九大所提出的教育教學(xué)改革,某校啟動(dòng)了數(shù)學(xué)教學(xué)方法的探索,學(xué)校將高一年級(jí)部分生源情況基本相同的學(xué)生分成甲、乙兩個(gè)班,每班40人,甲班按原有傳統(tǒng)模式教學(xué),乙班實(shí)施自主學(xué)習(xí)模式.經(jīng)過一年的教學(xué)實(shí)驗(yàn),將甲、乙兩個(gè)班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù),兩個(gè)班學(xué)生的平均成績均在,按照區(qū)間,,,,進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀.
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
(1)完成表格,并判斷是否有以上的把握認(rèn)為“數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)”;
甲班 | 乙班 | 合計(jì) | |
大于等于80分的人數(shù) | |||
小于80分的人數(shù) | |||
合計(jì) |
(2)從乙班,,分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取7名學(xué)生座談,從中選三位同學(xué)發(fā)言,記來自發(fā)言的人數(shù)為隨機(jī)變量,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求實(shí)數(shù)及的值;
(2)若有兩個(gè)極值點(diǎn),,求的取值范圍并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場種植小麥所獲得的收益.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,左、右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn)(不與左、右頂點(diǎn)重合),且的周長為6,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,直線交于點(diǎn).
(1)求橢圓方程;
(2)若直線與橢圓交于另一點(diǎn),且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,是橢圓上一點(diǎn),且面積的最大值為1.
(1)求橢圓的方程;
(2)過的直線交橢圓于兩點(diǎn),求的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com