13.設(shè)函數(shù)f(x)=|2x+3|+|x-1|.
(1)解不等式f(x)>4;
(2)若?x∈(-∞,-$\frac{3}{2}$),不等式a+1<f(x)恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)求出函數(shù)f(x)的分段函數(shù)的形式,通過討論x的范圍得到關(guān)于x的不等式組,解出取并集即可;
(2)x<-$\frac{3}{2}$時,f(x)=-3x-2>$\frac{5}{2}$,問題轉(zhuǎn)化為a+1≤$\frac{5}{2}$,求出a的范圍即可.

解答 解:(1)∵f(x)=|2x+3|+|x-1|,
∴f(x)=$\left\{\begin{array}{l}{-3x-2,x<-\frac{3}{2}}\\{x+4,-\frac{3}{2}≤x≤1}\\{3x+2,x>1}\end{array}\right.$,
f(x)>4?$\left\{\begin{array}{l}{x<-\frac{3}{2}}\\{-3x-2>4}\end{array}\right.$或$\left\{\begin{array}{l}{-\frac{3}{2}≤x≤1}\\{x+4>4}\end{array}\right.$或$\left\{\begin{array}{l}{x>1}\\{3x+2>4}\end{array}\right.$
?x<-2或0<x≤1或x>1,
綜上,不等式f(x)>4的解集是:(-∞,-2)∪(0,+∞);
(2)由(1)得:x<-$\frac{3}{2}$時,f(x)=-3x-2,
∵x<-$\frac{3}{2}$時,f(x)=-3x-2>$\frac{5}{2}$,
∴a+1≤$\frac{5}{2}$,解得:a≤$\frac{3}{2}$,
∴實(shí)數(shù)a的范圍是(-∞,$\frac{3}{2}$].

點(diǎn)評 本題考查了解絕對值不等式問題,考查分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短軸長為2$\sqrt{3}$,右焦點(diǎn)為F(1,0),點(diǎn)M是橢圓C上異于左、右頂點(diǎn)A,B的一點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線AM與直線x=2交于點(diǎn)N,線段BN的中點(diǎn)為E.證明:點(diǎn)B關(guān)于直線EF的對稱點(diǎn)在直線MF上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1-t}\\{y=t}\end{array}\right.$(t為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2(3+sin2θ)=12.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于不同的兩點(diǎn)A、B,交x軸于點(diǎn)N,點(diǎn)A在x軸的上方,M為弦AB的中點(diǎn),求|AN|-|BN|+|MN|+|AN|•|BN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知平面下列$\overrightarrow{a}$=(-2,3),$\overrightarrow$=(1,2),向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow$垂直,則實(shí)數(shù)λ的值為( 。
A.$\frac{4}{13}$B.-$\frac{4}{13}$C.$\frac{5}{4}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.當(dāng)今,手機(jī)已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機(jī)的人冠上了名號“低頭族”,手機(jī)已經(jīng)嚴(yán)重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認(rèn)識,從某社區(qū)的500名市民中,隨機(jī)抽取n名市民,按年齡情況進(jìn)行統(tǒng)計(jì)的得到頻率分布表和頻率分布直方圖如下:
 組數(shù)分組(單位:歲)頻數(shù)頻率
[20,25)50.05
 2[25,30)200.20
 3[30,35)a0.35
 4[35,40)30b
 5[40,45]100.10
合計(jì)n1.00
(1)求出表中的a,b,n的值,并補(bǔ)全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定從所隨機(jī)抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在[30,40)的選取2名擔(dān)任主要發(fā)言人.記這2名主要發(fā)言人年齡在[35,40)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F(xiàn)分別是線段DC和BC上的動點(diǎn),則$\overrightarrow{AC}•\overrightarrow{EF}$的取值范圍是[-4,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知異面直線l1,l2,點(diǎn)A是直線l1上的一個定點(diǎn),過l1,l2分別引互相垂直的兩個平面α,β,設(shè)l=α∩β,P為點(diǎn)A在l的射影,當(dāng)α,β變化時,點(diǎn)P的軌跡是( 。
A.B.兩條相交直線C.球面D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在三棱錐P-ABC,PA⊥平面ABC,AB=AC=AP=2,∠ABC=60°,則此三棱錐的外接球的表面積為$\frac{28π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=xln|x|+1,則f(x)的極大值與極小值之和為( 。
A.0B.1C.$2-\frac{2}{e}$D.2

查看答案和解析>>

同步練習(xí)冊答案