已知f(x)=log
1
2
(x2-mx-m),若函數(shù)f(x)在(-∞,1-
3
)上是增函數(shù),則實(shí)數(shù)m的取值范圍為
 
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意得 t=x2-mx-m 在(-∞,1-
3
)上為減函數(shù),且x2-mx-m>0,則對(duì)稱軸大于等于1-
3
,f(1-
3
)≥0,求得實(shí)數(shù)m的取值范圍.
解答: 解:由題意得 t=x2-mx-m 在(-∞,1-
3
)上為減函數(shù),且x2-mx-m>0,根據(jù)二次函數(shù)t的對(duì)稱軸為x=
1
2
m,
1
2
m
≥1-
3
,(1-
3
2-m(1-
3
)-m≥0,
∴2-2
3
≤m≤2,
故答案為:[2-2
3
,2]
;
點(diǎn)評(píng):本題考查復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)的單調(diào)性及特殊點(diǎn),以及二次函數(shù)的性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+ax2+x在點(diǎn)(1,f(1))處的切線與x+6y=0垂直,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=1與直線y=kx+2沒有公共點(diǎn),那么k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=tanωx在(-π,π)內(nèi)是減函數(shù),則實(shí)數(shù)ω的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=
2an(0≤an
1
2
)
2an-1(
1
2
an<1)
,若a1=
5
7
,則a2014的值為( 。
A、
6
7
B、
5
7
C、
3
7
D、
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知S8=48,S12=168,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓短軸長(zhǎng)等于a4,離心率e=
3
2
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={y|y=x2+1},E={x|y=x2+1},F(xiàn)={x|x≥1},G={(x,y)|y=x2+1},則( 。
A、P=FB、G=F
C、E=FD、P=G

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,若a4+a7+a10=15,2a6=a3+7,且ak=13,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙O:x2+y2=20與⊙C關(guān)于直線l:y=2x+5對(duì)稱.
(1)求⊙C方程;
(2)判斷兩圓是否相交,若兩圓相交,試求⊙O被公共弦分割成的兩段弧長(zhǎng);若不相交,則說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案