已知集合P={y|y=x2+1},E={x|y=x2+1},F(xiàn)={x|x≥1},G={(x,y)|y=x2+1},則( 。
A、P=FB、G=F
C、E=FD、P=G
考點(diǎn):集合的相等
專題:集合
分析:分別把各個(gè)集合解出來(lái),然后判斷他們的關(guān)系即可.
解答: 解:P={y|y≥1},E=R,F(xiàn)={x|x≥1},G表示點(diǎn)集,
故P=F.
故選A.
點(diǎn)評(píng):本題主要考查集合間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域.
①y=
2-x
+
1
x+1

②y=
x+2
|x|-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

使函數(shù)f(x)=
3
cos(2x+θ)+sin(2x+θ)為奇函數(shù),且在[0,
π
4
]上是減函數(shù)的一個(gè)θ值是( 。
A、
π
3
B、
3
C、
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log
1
2
(x2-mx-m),若函數(shù)f(x)在(-∞,1-
3
)上是增函數(shù),則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(0,1)的直線與圓x2+y2=4相交于A,B兩點(diǎn),則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,已知a2+a10=16,則a3+a9=( 。
A、8B、16C、20D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={z||z|≤1},
(1)求集合A中復(fù)數(shù)z=x+yi所對(duì)應(yīng)的復(fù)平面內(nèi)動(dòng)點(diǎn)坐標(biāo)(x,y)滿足的關(guān)系?并在復(fù)平面內(nèi)畫出圖形.
(2)若z∈A,求z取值時(shí),|z-(1+i)|取得最大值、最小值,并求|z-(1+i)|的最大值、最小值.
(3)若B={z||z-ai|≤2},且A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={y|y=x2,x∈R},B={y|y=ex,x∈R},則A∩B=(  )
A、(0,+∞)
B、(-∞,0)
C、[0,+∞)
D、(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)是定義在(1,4)上的單調(diào)遞減函數(shù),且f(2t-1)-f(t)<0,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案