2.下圖中屬于棱柱的有(  )
A.2個B.3個C.4個D.5個

分析 利用棱柱的定義判斷即可.

解答 解:由題意可知,幾何體依次是四棱柱,長方體,球,圓柱,圓錐,四棱柱,三棱柱;
屬于棱柱的有4個.
故選:C.

點評 本題考查棱柱的定義的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知使關于x的不等式$\frac{2lnx}{x}$+1≥$\frac{m}{x}$-$\frac{3}{x^2}$對任意的x∈(0,+∞)恒成立的實數(shù)m的取值集合為A,函數(shù)f(x)=$\sqrt{16-{x^2}}$的值域為B,則有( 。
A.B⊆∁RAB.A⊆∁RBC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設函數(shù)f(x)是定義在(-∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2016)2f(x+2016)-4f(-2)>0的解集為( 。
A.(-∞,-2016)B.(-∞,-2018)C.(-2018,0)D.(-2016,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若集合A={x|-1≤x≤1},B={x|0<x<2},則A∩B=( 。
A.{x|-1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若f(x)為偶函數(shù),且在(-∞,0)單調遞增,則下列關系式中成立的是( 。
A.f(-$\frac{3}{2}$)<f(-1)<f(2)B.f(-1)<f($\frac{3}{2}$)<f(-1)<f(2)C.f(2)<f(-1)<f(-$\frac{3}{2}$)D.f(-2)<f($\frac{3}{2}$)<f(-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若函數(shù)f(x)=(k-2)x2+(k-1)x+3是偶函數(shù),則函數(shù)g(x)=kx2+2x-3的遞減區(qū)間是(  )
A.(1,+∞)B.(-1,+∞)C.(-∞,1)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.定義在(0,+∞)上的函數(shù)f(x),對于任意的實數(shù)x,y,都有f(xy)=f(x)+f(y),則f(1)的值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若直線l經過點(a-2,-1)和(-a-2,1),且與經過點(-2,1)斜率為-$\frac{2}{3}$的直線垂直,則實數(shù)a的值為(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在極坐標系中,由三條曲線θ=0,θ=$\frac{π}{3}$,ρcosθ+$\sqrt{3}$ρsinθ=1圍成的圖形的面積是( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{8}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習冊答案