16.設(shè)函數(shù)f(x)和g(x)分別是R上的奇函數(shù)和偶函數(shù),則函數(shù)h(x)=g(x)|f(x)|的圖象((  )
A.關(guān)于原點(diǎn)對(duì)稱B.關(guān)于x軸對(duì)稱C.關(guān)于y軸對(duì)稱D.關(guān)于直線y=x對(duì)稱

分析 利用函數(shù)的奇偶性,轉(zhuǎn)化求解判斷即可.

解答 解:函數(shù)f(x)和g(x)分別是R上的奇函數(shù)和偶函數(shù),
可得:f(-x)=-f(x)和g(-x)=g(x)
則函數(shù)h(x)=g(x)|f(x)|,可得h(-x)=g(-x)|f(-x)|=g(x)|f(x)|=h(x)
函數(shù)h(x)是偶函數(shù),函數(shù)的圖象關(guān)于y軸對(duì)稱.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的圖象的對(duì)稱性,函數(shù)的奇偶性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,有一建筑物OP,為了測(cè)量它的高度,在地面上選一長(zhǎng)度為40m的基線AB,若在點(diǎn)A處測(cè)得P點(diǎn)的仰角為30°,在B點(diǎn)處的仰角為45°,且∠AOB=30°,則建筑物的高度為( 。
A.20mB.20$\sqrt{2}$mC.20$\sqrt{3}$mD.40m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某校隨機(jī)調(diào)查了110名不同性別的學(xué)生每天在校的消費(fèi)情況,規(guī)定:50元以下為正常消費(fèi),大于或等于50元為非正常消費(fèi).統(tǒng)計(jì)后,得到如下的2×2列聯(lián)表,已知在調(diào)查對(duì)象中隨機(jī)抽取1人,為非正常消費(fèi)的概率為$\frac{3}{11}$.
正常非正常合計(jì)
302050
501060
合計(jì)8030110
(Ⅰ)請(qǐng)完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認(rèn)為消費(fèi)情況與性別有關(guān)系?
附臨界值表參考公式:
P(K2≥k00.1000.050.0250.0100.001
k02.7063.8415.0246.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn,a1=2,an+1=Sn+2(n∈N*).
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.復(fù)數(shù)z=$\frac{(i-1)^{2}+2}{i+1}$的實(shí)部為( 。
A.-2B.-1C.1、D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$
(1)畫(huà)出函數(shù)f(x)在[-$\frac{π}{12}$,$\frac{11π}{12}$]上的簡(jiǎn)圖.
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],函數(shù)g(x)=f(x)+m的最小值為2,求函數(shù)g(x)在該區(qū)間的最大值及取得最大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.口袋中裝有一些大小相同的紅球、白球和黑球,從中摸出一個(gè)球,摸出紅球的概率是0.43,摸出白球的概率是0.27,那么摸出黑球的概率是( 。
A.0.43B.0.27C.0.3D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若點(diǎn)A的坐標(biāo)是(3,2),F(xiàn)是拋物線y2=2x的焦點(diǎn),點(diǎn)P在拋物線上移動(dòng),為使得|PA|+|PF|取得最小值,則P點(diǎn)的坐標(biāo)是( 。
A.(1,2)B.(2,1)C.(2,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}a{x^2}$lnx+bx+1.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x-2y+1=0,求f(x)的單調(diào)區(qū)間;
(2)若a=2,且關(guān)于x的方程f(x)=1在$[{\frac{1}{e^2},e}]$上恰有兩個(gè)不等的實(shí)根,求實(shí)數(shù)b的取值范圍;
(3)若a=2,b=-1,當(dāng)x≥1時(shí),關(guān)于x的不等式f(x)≥t(x-1)2恒成立,求實(shí)數(shù)t的取值范圍(其中e是自然對(duì)數(shù)的底數(shù),e=2,71828…).

查看答案和解析>>

同步練習(xí)冊(cè)答案