分析 (Ⅰ)由a1=2,an+1=Sn+2(n∈N*),an=Sn-1+2(n≥2),相減利用等比數(shù)列的通項(xiàng)公式即可得出.
(Ⅱ)利用“錯(cuò)位相減法”、等比數(shù)列的通項(xiàng)公式即可得出.
解答 解:(Ⅰ)由a1=2,an+1=Sn+2(n∈N*),①
an=Sn-1+2(n≥2),②…(2分)
①-②,得$2{a_n}={a_{n+1}}⇒\frac{{{a_{n+1}}}}{a_n}=2$(n≥2).…(4分)
又由a2=S1+2=4,得$\frac{a_2}{a_1}=2$.…(5分)
所以$\frac{{{a_{n+1}}}}{a_n}=2$(n≥1),數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,故${a_n}={2^n}$.…(6分)
(Ⅱ)由(Ⅰ),得${T_n}=1×2+2×{2^2}+3×{3^3}+…+n×{2^n}$,③
2Tn=1×22+2×33+3×24+…+n×2n+1,④…(8分)
③-④,得$-{T_n}=2+{2^2}+{3^3}+…+{2^n}-n{2^{n+1}}$.…(10分)
所以${T_n}=2+(n-1){2^{n+1}}$.…(12分)
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>e2 | B. | a<e2 | C. | a>-2e | D. | a<-2e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{{e^π}(1-{e^{2017π}})}}{{1-{e^{2π}}}}$ | B. | $\frac{{{e^π}(1-{e^{1009π}})}}{{1-{e^π}}}$ | ||
C. | $\frac{{{e^π}(1-{e^{1008π}})}}{{1-{e^{2π}}}}$ | D. | $\frac{{{e^π}(1-{e^{2016π}})}}{{1-{e^{2π}}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于原點(diǎn)對(duì)稱 | B. | 關(guān)于x軸對(duì)稱 | C. | 關(guān)于y軸對(duì)稱 | D. | 關(guān)于直線y=x對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,2] | B. | [0,1] | C. | [-1,1) | D. | (-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com