分析 (1)通過(guò)討論x的范圍,去掉絕對(duì)值號(hào),求出函數(shù)的導(dǎo)數(shù),求出函數(shù)的單調(diào)區(qū)間即可;
(2)做出函數(shù)f(x)=|x•ex|的圖象,根據(jù)圖象可判斷在($\frac{1}{e}$,+∞)上可有一個(gè)跟,在(0,$\frac{1}{e}$)上可有三個(gè)根,根據(jù)二次函數(shù)的性質(zhì)可得出y($\frac{1}{e}$)<0,求解即可.
解答 解:(1)x≥0時(shí),f(x)=xex,f′(x)=(x+1)ex>0,
f(x)在[0,+∞)遞增,
x<0時(shí),f(x)=-xex,f′(x)=-(x+1)ex,
令f′(x)>0,解得:x<-1,
令f′(x)<0,解得:-1<x<0,
故f(x)在(-∞,-1)遞增,在(-1,0)遞減;
(2)g(x)=-1的x有四個(gè),
∴f2(x)+tf(x)-1=0有4個(gè)根,
f(x)=|x•ex|的圖象如圖:
在x<0時(shí),有最大值f(-1)=$\frac{1}{e}$,
故要使有四個(gè)解,則f2(x)+tf(x)-1=0
一根在(0,$\frac{1}{e}$)中間,一根在($\frac{1}{e}$,+∞),
∴$\frac{1}{{e}^{2}}$+t$\frac{1}{e}$+1<0,
∴t-$\frac{1}{e}$<-$\frac{1}{{e}^{2}}$-1,
∴t<-$\frac{1}{e}$-e=-$\frac{{e}^{2}+1}{e}$.
點(diǎn)評(píng) 考查了抽象函數(shù)的理解和利用數(shù)學(xué)結(jié)合的思想求解問(wèn)題.難點(diǎn)是對(duì)函數(shù)圖象的理解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A=B | B. | A⊆B | C. | B⊆A | D. | A∩B={x|x≥1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3,4,5 | B. | 4,5,6 | C. | 2,4,5 | D. | 2,3,4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=tan({2x+\frac{π}{6}})$ | B. | $y=cot({x-\frac{π}{6}})$ | C. | $y=tan({2x-\frac{π}{6}})$ | D. | y=tan2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k<32 | B. | k<33 | C. | k<64 | D. | k<65 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{8}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com