6.函數(shù)f(x)=$\frac{{{{(x-2)}^0}}}{{\sqrt{-{x^2}+4x-3}}}$的定義域是(1,2)∪(2,3).

分析 根據(jù)函數(shù)的解析式,列出使函數(shù)解析式有意義的不等式組,求出解集即可

解答 解:函數(shù)f(x)=$\frac{{{{(x-2)}^0}}}{{\sqrt{-{x^2}+4x-3}}}$的定義域滿足:$\left\{\begin{array}{l}{x-2≠0}\\{-{x}^{2}+4x-3>0}\end{array}\right.$,解得:1<x<3,且x≠2.
所以函數(shù)f(x)=$\frac{{{{(x-2)}^0}}}{{\sqrt{-{x^2}+4x-3}}}$的定義域為:(1,2)∪(2,3)
故答案為:(1,2)∪(2,3)

點評 本題考查了求函數(shù)定義域的應(yīng)用問題,解題的關(guān)鍵是列出使函數(shù)解析式有意義的不等式組,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.用分期付款的方式購買一批總價為2100萬元的住房,購買當(dāng)天首付100萬元,以后每月的這一天都交100萬元,并加付此前的欠款利息,設(shè)月利率為1%,問分期付款的第10個月應(yīng)付多少萬元?全部付清,買這批房實際付了多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知A(1,1),B(4,2),則直線AB的斜率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=x4+ax3+2x2+b(x∈R,a,b∈R),若函數(shù)f(x)僅在x=0處有極值,則實數(shù)a的取值范圍為( 。
A.(-$\frac{8}{3}$,$\frac{8}{3}$)B.[-$\frac{8}{3}$,$\frac{8}{3}$]C.(-∞,-$\frac{8}{3}$)∪($\frac{8}{3}$,+∞)D.[-∞,$\frac{8}{3}$]∪[$\frac{8}{3}$,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“x≠1或y≠3”是“x+y≠4”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.N(100,σ2),已知P(80<ξ≤100)=0.35,若按成績分層抽樣的方式取100份試卷進行分析,則應(yīng)從120分以上的試卷中抽取( 。
A.5份B.10份C.15份D.20份

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式x2+x<$\frac{a}$+$\frac{9b}{a}$對任意a,b∈(0,+∞)恒成立,則實數(shù)x的取值范圍是(  )
A.(-∞,3)∪(2,+∞)B.(-6,1)C.(-∞,-6)∪(1,+∞)D.(-3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若關(guān)于x的方程|logax|=m(a>0且a≠1,m>0)有兩個不相等的實數(shù)根x1,x2,則x1x2與1的大小關(guān)系是( 。
A.x1x2>1B.x1x2<1C.x1x2=1D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等比數(shù)列{an}中,a5=6,則數(shù)列{log6an}的前9項和等于( 。
A.6B.9C.12D.16

查看答案和解析>>

同步練習(xí)冊答案