4.計(jì)算下列各式的值
(1)$\root{4}{{{{(3-π)}^4}}}$+(0.008)${\;}^{-\frac{1}{3}}}$-(0.25)${\;}^{\frac{1}{2}}}$×(${\frac{1}{{\sqrt{2}}}}$)-4;
(2)log3$\sqrt{27}$-log3$\sqrt{3}$-lg625-lg4+ln(e2)-$\frac{4}{3}$lg$\sqrt{8}$.

分析 (1)根據(jù)指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可,
(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(1)原式=π-3+$0.{2}^{3×(-\frac{1}{3})}$-$0.{5}^{2×\frac{1}{2}}$×${2}^{-\frac{1}{2}×(-4)}$=π-3+5-0.5×4=π,
(2)原式=log33-lg2500+2-lg4=1+2-lg10000=3-4=-1.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì)和指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線(xiàn)C1的極坐標(biāo)方程為ρ2=$\frac{3}{1+2co{s}^{2}θ}$,直線(xiàn)l的極坐標(biāo)方程為ρ=$\frac{4}{sinθ+cosθ}$.
(Ⅰ)寫(xiě)出曲線(xiàn)C1與直線(xiàn)l的直角坐標(biāo)方程;
(Ⅱ)設(shè)Q為曲線(xiàn)C1上一動(dòng)點(diǎn),求Q點(diǎn)到直線(xiàn)l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則點(diǎn)C1到直線(xiàn)BD的距離為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知映射f:(x,y)→(x-2y,2x+x),則(2,4)→(-6,6),(1,3)→(-5,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x2+ax+b(a,b∈R),
(1)若函數(shù)f(x)在區(qū)間[-1,1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)記M(a,b)是|f(x)|在區(qū)間[-1,1]上的最大值,證明:當(dāng)|a|≥2時(shí),M(a,b)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{1}{x}$+lg(1-2x)定義域?yàn)閧x|x<$\frac{1}{2}$且x≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知p:x2+x-2>0,q:x>a,若q是p的充分不必要條件,則a的取值范圍是( 。
A.(-∞,-2)B.(-2,+∞)C.(-2,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某班的75名同學(xué)已編號(hào)1,2,3,…,75,為了解該班同學(xué)的作業(yè)情況,老師收取了學(xué)號(hào)能被5整除的15名同學(xué)的作業(yè)本,這里運(yùn)用的抽樣方法是( 。
A.簡(jiǎn)單隨機(jī)抽樣法B.系統(tǒng)抽樣法C.分層抽樣法D.抽簽法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,DE垂直平分線(xiàn)段PC,且分別交AC、PC于D、E兩點(diǎn),PB=BC,PA=AB=1.
(1)求證:PC⊥平面BDE;
(2)求三棱錐E-BCD的外接球的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案