9.函數(shù)f(x)=$\frac{1}{x}$+lg(1-2x)定義域?yàn)閧x|x<$\frac{1}{2}$且x≠0}.

分析 由對(duì)數(shù)式的真數(shù)大于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{x≠0}\\{1-2x>0}\end{array}\right.$,得x<$\frac{1}{2}$且x≠0,
∴函數(shù)f(x)=$\frac{1}{x}$+lg(1-2x)定義域?yàn)閧x|x<$\frac{1}{2}$且x≠0}.
故答案為:{x|x<$\frac{1}{2}$且x≠0}.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查了分式不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.畫出$\frac{5}{6}$π的正弦、余弦線,并寫出對(duì)應(yīng)的正弦、余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列命題中,正確的共有( 。
①因?yàn)橹本是無(wú)限的,所以平面內(nèi)的一條直線就可以延伸到平面外去;
②兩個(gè)平面有時(shí)只相交于一個(gè)公共點(diǎn);
③分別在兩個(gè)相交平面內(nèi)的兩條直線如果相交,則交點(diǎn)只可能在兩個(gè)平面的交線上;
④一條直線與三角形的兩邊都相交,則這條直線必在三角形所在的平面內(nèi).
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)偶函數(shù)f(x)的定義域?yàn)閇-4,0)∪(0,4],若當(dāng)x∈(0,4]時(shí),f(x)=log2x,
(1)求出函數(shù)在定義域[-4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.計(jì)算下列各式的值
(1)$\root{4}{{{{(3-π)}^4}}}$+(0.008)${\;}^{-\frac{1}{3}}}$-(0.25)${\;}^{\frac{1}{2}}}$×(${\frac{1}{{\sqrt{2}}}}$)-4;
(2)log3$\sqrt{27}$-log3$\sqrt{3}$-lg625-lg4+ln(e2)-$\frac{4}{3}$lg$\sqrt{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.從2、3、8、9任取兩個(gè)不同的數(shù)值,分別記為a,b,則logab為整數(shù)的概率(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)A,B互為對(duì)立事件,且P(A)=0.3,則P(B)為( 。
A.0.2B.0.3C.小于0.7D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知向量$\overrightarrow m=(b,\sqrt{3}a)$,$\overrightarrow n=(cosB,sinA)$,且$\overrightarrow m∥\overrightarrow n$.
(1)求角B的大。
(2)若b=2,△ABC的面積為$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)f(x)是偶函數(shù),且在(-∞,0]上是增函數(shù),又f(2)=0,則xf(x)>0的解集是( 。
A.(-2,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0]∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案