【題目】已知是平面內(nèi)兩個(gè)不共線的非零向量,,,,且三點(diǎn)共線.

1求實(shí)數(shù)的值;

2)已知,點(diǎn),若四點(diǎn)按逆時(shí)針順序構(gòu)成平行四邊形,求點(diǎn)的坐標(biāo).

【答案】1;2

【解析】

試題分析:1由三點(diǎn)共線可知,據(jù)已知條件,可得關(guān)于的方程組,解方程組得值;2由已知條件可求出坐標(biāo),由平行四邊形的邊之間的關(guān)系可得,再由點(diǎn)坐標(biāo)可得點(diǎn)的坐標(biāo).

試題解析:

12e1e2e1λe2e11λe2A,E,C三點(diǎn)共線,

存在實(shí)數(shù)k,使得k,

e11λe2k2e1e2,

12ke1k1λe2.

e1,e2是平面內(nèi)兩個(gè)不共線的非零向量,

,解得k=-,λ=-.

2=-3e1e26,-31,17,-2

A,B,C,D四點(diǎn)按逆時(shí)針順序構(gòu)成平行四邊形,.

設(shè)Ax,y,則3x,5y,

7,-2,解得,

即點(diǎn)A的坐標(biāo)為10,7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過點(diǎn)

求橢圓的方程;

過點(diǎn)且不與軸重合的直線與橢圓交于不同的兩點(diǎn),,過右焦點(diǎn)的直線分別交橢圓于點(diǎn),設(shè), ,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( 。

A.,則,的長度相等,方向相同或相反

B.若向量是向量的相反向量,則

C.空間向量的減法滿足結(jié)合律

D.在四邊形中,一定有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,直線經(jīng)過橢圓的左焦點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線軸交于點(diǎn)、是橢圓上的兩個(gè)動(dòng)點(diǎn),且它們在軸的兩側(cè),的平分線在軸上,|,則直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極坐標(biāo)建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

的普通方程;

將圓平移,使其圓心為,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)關(guān)于原點(diǎn)對稱,線段的垂直平分線與相交于點(diǎn),求的軌跡的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線上一點(diǎn),的焦點(diǎn).

(1)若,上的兩點(diǎn),證明:,,依次成等比數(shù)列.

(2)過作兩條互相垂直的直線與的另一個(gè)交點(diǎn)分別交于,(的上方),求向量軸正方向上的投影的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若各項(xiàng)均不為零的數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,且,.

1)證明數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;

2)設(shè),是否存在正整數(shù),使得對于恒成立.若存在,求出正整數(shù)的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中直線與拋物線C交于A,B兩點(diǎn),且

C的方程;

D為直線外一點(diǎn),且的外心MC上,求M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案