6.為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如右圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方式從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進(jìn)行雜交實(shí)驗(yàn),選取的植株均為矮莖的概率是多少?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
( ${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (1)計(jì)算K2,與臨界值比較,即可得出結(jié)論;
(2)確定基本事件的個數(shù),即可求出相應(yīng)的概率.

解答 解:(1)根據(jù)統(tǒng)計(jì)數(shù)據(jù)做出2×2列聯(lián)表如下:

抗倒伏易倒伏合計(jì)
矮莖15419
高莖101626
合計(jì)252045
經(jīng)計(jì)算k≈7.287>6.635,因此可以在犯錯誤概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān).(6分)
(2)分層抽樣后,高莖玉米有2株,設(shè)為A,B,矮莖玉米有3株,設(shè)為a,b,c,從中取出2株的取法有AB,Aa,Ab,Ac,Ba,Bb,Bc,ab,ac,bc,共10種,其中均為矮莖的選取方式有ab,ac,bc共3種,因此選取的植株均為矮莖的概率是$\frac{3}{10}$.(12分)

點(diǎn)評 本小題主要考查學(xué)生對概率統(tǒng)計(jì)知識的理解,以及統(tǒng)計(jì)案例的相關(guān)知識,同時考查學(xué)生的數(shù)據(jù)處理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,有一個正三棱錐的零件,P是側(cè)面ACD上的一點(diǎn).過點(diǎn)P作一個與棱AB垂直的截面,怎樣畫法?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是線段AB上的點(diǎn),則P到AC,BC的距離的乘積的最大值為( 。
A.3B.2C.$2\sqrt{3}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+(1-a)x-alnx\;,\;a∈R$.
(1)若f(x)存在極值點(diǎn)為1,求a的值;
(2)若f(x)存在兩個不同零點(diǎn)x1,x2,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義域?yàn)镽的函數(shù)f(x)的圖象經(jīng)過點(diǎn)(1,1),且對任意實(shí)數(shù)x1<x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>-2$,則不等式$f({log_2}|{3^x}-1|)<3-{log_{\sqrt{2}}}|{3^x}-1|$的解集為( 。
A.(-∞,0)∪(0,1)B.(0,+∞)C.(-1,0)∪(0,3)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.秦九昭是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項(xiàng)式求值的秦九昭算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九昭算法求某多項(xiàng)式值的一個實(shí)例,若輸入n,x的值分別為3,4,則輸出y的值為( 。
A.6B.25C.100D.400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.?dāng)?shù)列{an}滿足an+1+(-1)nan=n+1,則{an}前40項(xiàng)的和440.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知遞增數(shù)列{an},a1=2,其前n項(xiàng)和為Sn,且滿足3(Sn+Sn-1)=${a}_{n}^{2}$+2(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足${log}_{2}\frac{_{n}}{{a}_{n}}$=n,求其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD=1,AB=$\sqrt{3}$,點(diǎn)E為PD的中點(diǎn),點(diǎn)F在棱DC上移動.
(1)當(dāng)點(diǎn)F為DC的中點(diǎn)時,求證:EF∥平面PAC
(2)求證:無論點(diǎn)F在DC的何處,都有PF⊥AE
(3)求二面角E-AC-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案