【題目】已知圓Cx2+y2+2x4y+30

1)若直線lx+y0與圓C交于A,B兩點(diǎn),求弦AB的長(zhǎng);

2)從圓C外一點(diǎn)Px1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM||PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

【答案】12P

【解析】

1)根據(jù)圓的弦長(zhǎng)公式即可求出;

2)因?yàn)?/span>|PM||PO|,所以|PM|的最小值就是|PO|的最小值,根據(jù)幾何知識(shí)可求出點(diǎn)P的運(yùn)動(dòng)軌跡為直線2x4y+30,所以點(diǎn)到直線的距離最短,即求出|PM|取得最小值,再聯(lián)立直線2x4y+30,即可求出點(diǎn)P的坐標(biāo).

1)圓C可化為(x+12+y222,則圓心C(﹣1,2),

所以C到直線l的距離d

則弦長(zhǎng)AB2;

2)因?yàn)榍芯PM與半徑CM垂直,所以|PM|2|PC|2|CM|2,

又因?yàn)?/span>|PM||PO|,則|PO|2|PC|2|CM|2,即(x1+12+y1222x12+y12

整理得2x14y1+30,所以點(diǎn)P的運(yùn)動(dòng)軌跡為直線2x4y+30,

所以|PM|的最小值就是|PO|的最小值.

|PO|的最小值為原點(diǎn)O到直線2x4y+30的距離d,

過點(diǎn)且垂直于直線2x4y+30的方程為:

所以由,得,

故所求點(diǎn)P的坐標(biāo)為P).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為M是橢圓C的上頂點(diǎn),,F(xiàn)2是橢圓C的焦點(diǎn),的周長(zhǎng)是6.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過動(dòng)點(diǎn)P(1,t)作直線交橢圓CA,B兩點(diǎn),且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點(diǎn),并求此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Q是圓上的動(dòng)點(diǎn),點(diǎn),若線段QN的垂直平分線MQ于點(diǎn)P.

(I)求動(dòng)點(diǎn)P的軌跡E的方程

(II)若A是軌跡E的左頂點(diǎn),過點(diǎn)D(-3,8)的直線l與軌跡E交于B,C兩點(diǎn),求證:直線AB、AC的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù),數(shù)列的前項(xiàng)和為, ;

(1)求數(shù)列的通項(xiàng)公式;

(2)若,且是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍;

(3)若 ,對(duì)于任意給定的正整數(shù),是否存在正整數(shù)、,使得?若存在,求出、的值(只要寫出一組即可);若不存在,請(qǐng)說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)若在函數(shù)定義域內(nèi),總有成立,試求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人設(shè)計(jì)一項(xiàng)單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長(zhǎng)為2個(gè)單位)的頂點(diǎn)處,然后通過擲骰子來確定棋子沿正方形的邊按逆時(shí)針方向行走了幾個(gè)單位,如果擲出的點(diǎn)數(shù)為,則棋子就按逆時(shí)針方向行走個(gè)單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到起點(diǎn)處的所有不同走法共有(

A.21B.22C.25D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購買2臺(tái)機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購買2臺(tái)這種機(jī)器。現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)購買哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺(tái)數(shù)

5

10

20

15

以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

(1)求X的分布列;

(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了檢查甲、乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取100件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:毫克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.

產(chǎn)品質(zhì)量/毫克

頻數(shù)

165,175]

3

175,185]

2

185,195]

21

195205]

36

205,215]

24

215,225]

9

225,235]

5

(Ⅰ)根據(jù)乙流水線樣本的頻率分布直方圖,求乙流水線樣本質(zhì)量的中位數(shù)(結(jié)果保留整數(shù));

(Ⅱ)從甲流水線樣本中質(zhì)量在的產(chǎn)品中任取2件產(chǎn)品,求兩件產(chǎn)品中恰有一件合格品的概率;

甲流水線

乙流水線

總計(jì)

合格品

不合格品

總計(jì)

(Ⅲ)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為產(chǎn)品的包裝合格與兩條自動(dòng)包裝流水線的選擇有關(guān)?

下面臨界值表僅供參考:

PK2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中na+b+c+d

查看答案和解析>>

同步練習(xí)冊(cè)答案