【題目】若數(shù)列對任意的,都有,且,則稱數(shù)列k級創(chuàng)新數(shù)列”.

1)已知數(shù)列滿足,試判斷數(shù)列是否為“2級創(chuàng)新數(shù)列,并說明理由;

2)已知正數(shù)數(shù)列k級創(chuàng)新數(shù)列,若,求數(shù)列的前n項積;

3)設是方程的兩個實根,令,在(2)的條件下,記數(shù)列的通項,求證:.

【答案】1)數(shù)列“2級創(chuàng)新數(shù)列,見解析(23)見解析

【解析】

1)數(shù)列“2級創(chuàng)新數(shù)列,下面給出證明:,可得

,即可證明.

2)正數(shù)數(shù)列“k級創(chuàng)新數(shù)列,.,

利用指數(shù)的運算性質(zhì)可得數(shù)列的前n項積.

3,是方程的兩個實根,可得.在(2)的條件下,記數(shù)列的通項.

1)解:數(shù)列“2級創(chuàng)新數(shù)列,下面給出證明:

,

,

數(shù)列“2級創(chuàng)新數(shù)列”.

2)解:正數(shù)數(shù)列“k級創(chuàng)新數(shù)列,

.

.

數(shù)列的前n項積

.

3)證明:,是方程的兩個實根,

.

在(2)的條件下,記數(shù)列的通項

.

.

.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線恰有一個公共點.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)已知曲線上兩點滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知雙曲線.

1)設的左焦點,右支上一點.,求點的坐標;

2)設斜率為1的直線兩點,若與圓相切,求證:

3)設橢圓.、分別是、上的動點,且,求證:到直線的距離是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是國家統(tǒng)計局給出的2014年至2018年我國城鄉(xiāng)就業(yè)人員數(shù)量的統(tǒng)計圖表,結合這張圖表,以下說法錯誤的是(

A.2017年就業(yè)人員數(shù)量是最多的

B.2017年至2018年就業(yè)人員數(shù)量呈遞減狀態(tài)

C.2016年至2017年就業(yè)人員數(shù)量與前兩年比較,增加速度減緩

D.2018年就業(yè)人員數(shù)量比2014年就業(yè)人員數(shù)量增長超過400萬人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,,平面,且,設分別為,的中點.

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABCABC,∠BAC90°ABACλAA,點MN分別為ABBC的中點.

1)證明:MN∥平面AACC;

2)若二面角AMNC為直二面角,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC中,三邊長ab,c滿足a2a2b2c=0,a+2b2c+3=0,則這個三角形最大角的大小為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:,,.

1)求的值;

2)設,求證:數(shù)列是等比數(shù)列,并求出其通項公式;

3)對任意的,,在數(shù)列中是否存在連續(xù)的項構成等差數(shù)列?若存在,寫出這項,并證明這項構成等差數(shù)列:若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案