一個四面體的頂點在空間直角坐標(biāo)系o-xyz中的坐標(biāo)分別是(1,0,1),(1,1,0),(0,1,1),(0,0,0),畫該四面體三視圖中的主視圖時,以zox平面為投影面,則得到主視圖可以為( 。
A、
B、
C、
D、
考點:簡單空間圖形的三視圖
專題:作圖題,空間位置關(guān)系與距離
分析:由題意畫出幾何體的直觀圖,然后判斷以zOx平面為投影面,則得到正視圖即可.
解答: 解:因為一個四面體的頂點在空間直角坐標(biāo)系O-xyz中的坐標(biāo)分別是(1,0,1),(1,1,0),(0,1,1),(0,0,0),幾何體的直觀圖如圖,是正方體的頂點為頂點的一個正四面體,所以以zOx平面為投影面,則得到正視圖為:

故選A
點評:本題考查幾何體的三視圖的判斷,根據(jù)題意畫出幾何體的直觀圖是解題的關(guān)鍵,考查空間想象能力
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

cos15°sin9°+sin6°
sin15°sin9°-cos6°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項,數(shù)列{bn}是等比數(shù)列,b1=
1
2
,a5-1恰為S4
1
b2
的等比中項,圓C:(x-2n)2+(y-
Sn
2=2n2,直線l;x+y=n,對任意n∈N*,直線l都與圓C相切
(Ⅰ)求數(shù)列{an},{bn}
(Ⅱ)若任意n∈N*,cn=anbn,求{cn}的前n項和Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,如該幾何體的表面積為92cm2,則h的值為(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,a3+a7=20,a1a9=64,求a11的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-2x在P點的切線平行于x軸,求P點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1+lnx
x-1
,g(x)=
k
x
(k∈N*),對任意的c>1,存在實數(shù)a,b滿足0<a<b<c,使得f(c)=f(a)=g(b),則k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)為定義在R上的奇函數(shù),且x>0時,f(x)=lg(x2-ax+10),若函數(shù)y=f(x)的值域為R,則實數(shù)a的取值范圍是( 。
A、(-∞,-2
10
]∪[2
10
,+∞)
B、(-2
10
,2
10
C、(-2
10
,-6]
D、[6,2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=1,以后各項由公式an=
an-1
an-1+1
(n>1,n∈N*)給出,寫出這個數(shù)列的前5項,并求該數(shù)列的通項公式.

查看答案和解析>>

同步練習(xí)冊答案