5.已知f(x)=ax3+3x2-x+1在R上是減函數(shù),則a的取值范圍是( 。
A.(-∞,0]B.[-∞,0)C.(-∞,-3)D.(-∞,-3]

分析 先求函數(shù)f(x)的導(dǎo)數(shù),然后令導(dǎo)函數(shù)小于0在R上恒成立求出a的范圍即可.

解答 解:函數(shù)f(x)的導(dǎo)數(shù):f′(x)=3ax2+6x-1.
當(dāng)f'(x)≤0(x∈R)時,f(x)是減函數(shù).
3ax2+6x-1≤0(x∈R)?a≤0且△=36+12a≤0?a≤-3.
所以,當(dāng)a≤-3時,由f'(x)≤0,知f(x)(x∈R)是減函數(shù),
故選:D.

點評 本小題主要考查導(dǎo)數(shù)的概念和計算,應(yīng)用導(dǎo)數(shù)研究函數(shù)單調(diào)性的基本方法,考查綜合運用數(shù)學(xué)知識解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=2x3-3x,則在f(x)的切線中,斜率最小的一條切線方程為y=-3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z=3i(i+1)的實部與虛部分別為( 。
A.3,3B.-3,-3iC.-3,3D.-3,3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{2}$,如果|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{3}$,那么|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=a(x+1)2ln(x+1)+bx(a,b∈R),曲線y=f(x)過點(e-1,e2-e+1)(e是自然對數(shù)的底數(shù)),且在點(0,0)處的切線方程為y=0.
(1)求a,b的值;
(2)證明:當(dāng)x≥0時,f(x)≥x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.計算$cos\frac{π}{3}tan\frac{π}{4}+\frac{3}{4}{tan^2}\frac{π}{6}-sin\frac{π}{6}+{cos^2}\frac{π}{6}$的結(jié)果為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$-1(0<a<1)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=$\frac{1}{3}$時,設(shè)函數(shù)g(x)=x2-2bx-$\frac{5}{9}$,若對于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.判斷兩個圓C1:x2+y2+2x+2y-2=0與C2:x2+y2-4x-2y+1=0的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)(用分析法證明)$\sqrt{3}+\sqrt{8}<2+\sqrt{7}$
(2)若a>0,b>0,c>0,且a+b+c=1求證:$\frac{1}{a}+\frac{1}+\frac{1}{c}≥9$.

查看答案和解析>>

同步練習(xí)冊答案