13.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{2}$,如果|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{3}$,那么|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{7}$.

分析 由已知條件可得$\overrightarrow{a}•\overrightarrow$=0,再根據(jù)|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{(2\overrightarrow{a}-\overrightarrow)^{2}}$,計(jì)算求得答案.

解答 解:∵平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{2}$,
∴$\overrightarrow{a}•\overrightarrow$=0.
又∵|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{3}$,
∴|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{(2\overrightarrow{a}-\overrightarrow)^{2}}=\sqrt{4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}}$=$\sqrt{7}$.
故答案為:$\sqrt{7}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,求向量的模的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)函數(shù)f(x)=|2x-1|的定義域和值域都是[a,b],則a+b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=ax+bsinx+1,若f(2017)=7,則f(-2017)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.網(wǎng)上購(gòu)物逐步走進(jìn)大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購(gòu),大家約定:每個(gè)人通過(guò)投擲一枚質(zhì)地均勻的骰子決定去哪家購(gòu)物,擲出點(diǎn)數(shù)5或6的人去淘寶購(gòu)物,擲處點(diǎn)數(shù)小于5的去京東商場(chǎng)購(gòu)物,且參加者必須從淘寶和京東商城選擇一家購(gòu)物.
(1)求這4人中恰有1人去淘寶購(gòu)物的概率;
(2)用ξ,η分別表示這4人中取淘寶和京東商城購(gòu)物的人數(shù),記X=ξη,求隨機(jī)變量X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)y=sin(ωx+φ)(ω>0,-π<φ≤π)的圖象如圖所示,則φ=$\frac{9}{10}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)已知M={2,(m2-2m)+(m2+m-2)i},P={-1,2,4i},若M∪P=P,求實(shí)數(shù)m的值.
(2)已知方程x2+4x+a=0(a∈R)的一個(gè)根為x1=-2+i,求a的值和方程的另一個(gè)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f(x)=ax3+3x2-x+1在R上是減函數(shù),則a的取值范圍是( 。
A.(-∞,0]B.[-∞,0)C.(-∞,-3)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下面中的兩個(gè)變量,具有相關(guān)關(guān)系的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m<0}.
(1)當(dāng)m<$\frac{1}{2}$時(shí),把集合B用區(qū)間表達(dá);
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案