13.若命題“?x0∈R,ax02-ax0-2≥0”是假命題,則實數(shù)a的取值范圍是(-8,0].

分析 命題“?x0∈R,ax02-ax0-2≥0”是假命題,則“?x0∈R,ax02-ax0-2<0”是真命題,即ax02-ax0-2<0恒成立

解答 解:命題“?x0∈R,ax02-ax0-2≥0”是假命題,則“?x0∈R,ax02-ax0-2<0”是真命題,
即ax02-ax0-2<0恒成立,當a=0時,成立;當a≠0時,$\left\{\begin{array}{l}{a<0}\\{△={a}^{2}+8a<0}\end{array}\right.$⇒-8<a<0
綜上實數(shù)a的取值范圍是(-8,0]
故答案為:(-8,0]

點評 本題考查了命題真假的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.某無人機運動過程中位移h(米)與時間t(秒)的函數(shù)關系式為h=15t-t2,當t=3秒時的瞬時速度是9(米/秒).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設集合A={-2,-1,0,1,2},B={x|x2+2x<0},則A∩(∁RB)=( 。
A.{1,2}B.{0,1,2}C.{-2,1,2}D.{-2,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知變量x、y滿足約束條件$\left\{\begin{array}{l}x+y-3≥0\\ 3x-y-3≥0\\ x≤a\end{array}\right.$若$\frac{y}{x+1}$的最大值為2,則$\frac{y}{x+1}$的最小值為( 。
A.$\frac{1}{6}$B.$-\frac{3}{5}$C.$-\frac{1}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,當你到達路口時,看見的不是紅燈的概率是(  )
A.$\frac{1}{15}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{8}{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,點$({\sqrt{3},-\frac{{\sqrt{3}}}{2}})$在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的右焦點F作直線l與橢圓C交于不同的兩點M(x1,y1),N(x2,y2),若點P與點N關于x軸對稱,判斷直線PM是否恒過定點,若是,求出該點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知命題“?x∈R,使4x2+(a-2)x+$\frac{1}{4}$≤0”是假命題,則實數(shù)a的取值范圍是(  )
A.(-∞,0)B.[0,4]C.[4,+∞)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若tanα<0,cosα<0,則α的終邊所有的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若sin(α+$\frac{π}{3}$)=$\frac{3}{5}$,則cos($\frac{π}{6}$-α)=$\frac{3}{5}$.

查看答案和解析>>

同步練習冊答案