18.已知復(fù)數(shù)z=a+$\sqrt{3}$i(a∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限,且|z|=2,則復(fù)數(shù)z等于(  )
A.-1+$\sqrt{3}$iB.1+$\sqrt{3}$iC.-1+$\sqrt{3}$i或1+$\sqrt{3}$iD.-2+$\sqrt{3}$i

分析 由題意可得:$\left\{\begin{array}{l}{a<0}\\{\sqrt{{a}^{2}+3}=2}\end{array}\right.$,解得a,即可得出.

解答 解:復(fù)數(shù)z=a+$\sqrt{3}$i(a∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限,且|z|=2,
∴$\left\{\begin{array}{l}{a<0}\\{\sqrt{{a}^{2}+3}=2}\end{array}\right.$,解得a=-1.
則復(fù)數(shù)z=-1+$\sqrt{3}$i.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,既是奇函數(shù)又存在零點(diǎn)的是( 。
A.y=sinxB.y=lnxC.y=x2D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個(gè)四棱錐的側(cè)棱長(zhǎng)都相等,底面是正方形,且其正視圖為如圖所示的等腰三角形,則該四棱錐的體積是( 。
A.$\frac{{4\sqrt{3}}}{3}$B.$2\sqrt{3}$C.$4\sqrt{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各函數(shù)中,最小值為4的是(  )
A.$y=x+\frac{4}{x}$B.$y=sinx+\frac{4}{sinx}(0<x<π)$
C.y=4log3x+logx3D.y=4ex+e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.不等式(m+1)x2-mx+m-1<0的解集為∅,則m的取值范圍(  )
A.m<-1B.m≥$\frac{2\sqrt{3}}{3}$C.m≤-$\frac{2\sqrt{3}}{3}$D.m≥$\frac{2\sqrt{3}}{3}$或m≤-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若拋物線y2=2px的焦點(diǎn)與雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{1}$=1的右焦點(diǎn)重合,則p的值為(  )
A.2$\sqrt{10}$B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線y2=12x,則該拋物線的準(zhǔn)線方程為(  )
A.x=-3B.x=3C.y=-3D.y=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=a-$\frac{|x|}$(x≠0).
(1)若函數(shù)f(x)是(0,+∞)上的增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)b=2時(shí),若不等式f(x)<x在區(qū)間(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)g(x)若存在區(qū)間[m,n](m<n),使x∈[m,n]時(shí),函數(shù)g(x)的值域也是[m,n],則稱g(x)是[m,n]上的閉函數(shù).若函數(shù)f(x)是某區(qū)間上的閉函數(shù),試探求a,b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ex-ax-1,(a為實(shí)數(shù)),g(x)=lnx-x
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)g(x)的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案