分析 由已知利用余弦定理,基本不等式即可得解cosC≥$\frac{\sqrt{3}}{2}$,結合C的范圍,利用余弦函數(shù)的圖象和性質(zhì)可求C的最大值.
解答 解:∵c=2$\sqrt{2}$,b2-a2=16,可得:$\frac{1}{2}$(b2-a2)=8,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+^{2}-8}{2ab}$=$\frac{{a}^{2}+^{2}-\frac{1}{2}(^{2}-{a}^{2})}{2ab}$=$\frac{3{a}^{2}+^{2}}{4ab}$≥$\frac{2\sqrt{3{a}^{2}^{2}}}{4ab}$=$\frac{\sqrt{3}}{2}$,
∴由于C∈(0°,180°),可得:C≤60°,即角C的最大值為60°.
故答案為:60°.
點評 本題主要考查了余弦定理,基本不等式,余弦函數(shù)的圖象和性質(zhì)在解三角形中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{116}{9}$ | B. | $\frac{34}{7}$ | C. | 36 | D. | $\frac{{6\sqrt{7}}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,4) | B. | (0,$\frac{4}{3}$) | C. | (0,2) | D. | ($\frac{4}{3}$,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12.656 | B. | 13.667 | C. | 11.414 | D. | 14.354 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -4 | C. | -8 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com