平面內(nèi)有條直線,其中任何兩條不平行,任何三條不共點(diǎn),當(dāng)時把平面分成的區(qū)域數(shù)記為,則     .
k

試題分析:當(dāng)時,任取其中1條直線,記為,則除外的其他k條直線的交點(diǎn)的個數(shù)為,因?yàn)橐阎魏蝺蓷l直線不平行,所以直線必與平面內(nèi)其他k條直線都相交(有k個交點(diǎn));
又因?yàn)橐阎魏稳龡l直線不過同一點(diǎn),所以上面的k個交點(diǎn)兩兩不相同,且與平面內(nèi)其他的f(k)個交點(diǎn)也兩兩不相同,從而平面內(nèi)交點(diǎn)的個數(shù)是.故:.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用數(shù)學(xué)歸納法證明42n+1+3n+2能被13整除,其中n∈N*.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,,
(1)當(dāng)時,試比較的大小關(guān)系;
(2)猜想的大小關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

各項(xiàng)均為正數(shù)的數(shù)列對一切均滿足.證明:
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明“當(dāng)n為正偶數(shù)時xn-yn能被x+y整除”第一步應(yīng)驗(yàn)證n=________時,命題成立;第二步歸納假設(shè)成立應(yīng)寫成____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明:(n+1)+ (n+2)+…+(n+n)=(n∈N*)的第二步中,當(dāng)n=k+1時等式左邊與n=k時的等式左邊的差等于   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明不等式2n>n2時,第一步需要驗(yàn)證n0=_____時,不等式成立(    )
A.5B.2和4C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明“12+22+32+…+n2n(n+1)(2n+1)(n∈N*)”,當(dāng)n=k+1時,應(yīng)在n=k時的等式左邊添加的項(xiàng)是________.

查看答案和解析>>

同步練習(xí)冊答案