19.為了調(diào)查市民對某活動的認(rèn)可程度,研究人員對其所在地區(qū)年齡在10~60歲間的n位市民作出調(diào)查,并將統(tǒng)計結(jié)果繪制成頻率分布直方圖如圖所示,若被調(diào)查的年齡在20~30歲間的市民有480人,則可估計被調(diào)查的年齡在40~50歲間的市民有320人.

分析 根據(jù)頻率分布直方圖,利用頻率、頻數(shù)與樣本容量的關(guān)系,即可求出對應(yīng)的數(shù)值.

解答 解:根據(jù)頻率分布直方圖得,年齡在20~30歲間的頻率為0.030×10=0.3,
所以樣本容量為n=$\frac{480}{0.3}$=1600,
年齡在40~50歲間的頻率為1-(0.010+0.030+0.035+0.005)×10=0.2,
故所求的人數(shù)為1600×0.2=320.
故答案為:320.

點評 本題考查了頻率分布直方圖和頻率、頻數(shù)與樣本容量的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)p:實數(shù)x滿足x2-4ax+3a2<0(其中a≠0),q:實數(shù)x滿足$\frac{x-3}{x-2}<0$
(1)若a=1,p且q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用一邊長為1米,另一邊長為a(0<a≤1)米的矩形鐵皮做一個無蓋的容器,先在四角分別截去一個長為x的小正方形,然后把四邊翻折90°角,再焊接而成,設(shè)該容器的容積為f(x).
(1)求f(x)的表達(dá)式,并寫出它的定義域;
(2)求容器的容積的最值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)fn(x)=a1x+a2x2+…+anxn,fn(-1)=(-1)n•n(n∈N*),則fn($\frac{1}{3}$)與1的大小為( 。
A.fn($\frac{1}{3}$)>1B.fn($\frac{1}{3}$)=1C.fn($\frac{1}{3}$)<1D.與n的大小有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$滿足$|{\overrightarrow a}|=\sqrt{3}$,$|{\overrightarrow b}|=3\sqrt{3}$,若向量$\overrightarrow a在\overrightarrow b$方向上的投影為$\frac{{\sqrt{3}}}{2}$,且向量$\overrightarrow a-\overrightarrow c$與向量$\overrightarrow b-\overrightarrow c$的夾角為120°,則$|{\overrightarrow c}$|的最大值等于$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知cosx=-$\frac{\sqrt{2}}{10}$,x∈($\frac{π}{2}$,π).
(1)求sinx的值;
(2)求tan(2x+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了適應(yīng)市場需要,某地準(zhǔn)備建一個圓形生豬儲備基地(如圖),它的附近有一條公路,從基地中心O處向東走1km是儲備基地的邊界上的點A,接著向東再走7km到達(dá)公路上的點B;從基地中心O向正北走8km到達(dá)公路的另一點C.現(xiàn)準(zhǔn)備在儲備基地的邊界上選一點D,修建一條由D通往公路BC的專用線DE,求DE的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.當(dāng)k為何值時,方程組$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=6}\\{x-y=k}\end{array}\right.$,有唯一解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(x)=$\sqrt{(x-1)\sqrt{{x^2}-x-2}}$的定義域為{-1}∪{x|x≥2}.

查看答案和解析>>

同步練習(xí)冊答案