16.下列說(shuō)法中不正確的個(gè)數(shù)是( 。
①“x=1”是“x2-3x+2=0”的必要不充分條件
②命題“?x∈R,cosx≤1”的否定是“?x0∈R,cosx0≥1”
③若一個(gè)命題的逆命題為真,則它的否命題一定為真.
A.3B.2C.1D.0

分析 利用充要條件判斷①的正誤;命題的否定判斷②的正誤;四種命題的逆否關(guān)系判斷③的正誤;

解答 解:對(duì)于①“x=1”是“x2-3x+2=0”的充分不必要條件,不是必要不充分條件,所以①不正確;
對(duì)于②命題“?x∈R,cosx≤1”的否定是“?x0∈R,cosx0≥1”,不滿足命題的否定形式,所以②不正確;
對(duì)于③若一個(gè)命題的逆命題為真,則它的否命題一定為真.滿足四種命題的逆否關(guān)系,正確;
故選:B.

點(diǎn)評(píng) 本題考查命題的真假的判斷與應(yīng)用,充要條件以及命題的否定,四種命題的逆否關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|x|+|x+1|.
(1)若?x∈R,恒有f(x)≥λ成立,求實(shí)數(shù)λ的取值范圍;
(2)若?m∈R,使得m2+2m+f(t)=0成立,試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)f(x)=$\frac{(4x+a)lnx}{3x+1}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若對(duì)于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范圍;
(Ⅲ)求證:ln(4n+1)≤16$\sum_{i=1}^{n}$$\frac{i}{(4i+1)(4i-3)}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=f(x)滿足對(duì)任意x∈R都有f(x+2)=f(-x)成立,且函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,f(1)=4,則f(2016)+f(2017)+f(2018)的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知當(dāng)x<1時(shí),f(x)=(2-a)x+1;當(dāng)x≥1時(shí),f(x)=ax(a>0且a≠1).若對(duì)任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$成立,則a的取值范圍是( 。
A.(1,2)B.$(1,\frac{3}{2}]$C.$[\frac{3}{2},2)$D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書(shū)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出的v值為( 。
A.9×210-2B.9×210+2C.9×211+2D.9×211-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知全集U=R,集合$A=\left\{{x|{2^x}>\frac{1}{2}}\right\},B=\left\{{x|{{log}_3}x<1}\right\}$,則A∩(∁UB)=( 。
A.(-1,+∞)B.[3,+∞)C.(-1,0)∪(3,+∞)D.(-1,0]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.i為虛數(shù)單位,復(fù)數(shù)$\frac{3+i}{1-i}$的虛部是( 。
A.2iB.2C.-2iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某人打算制定一個(gè)長(zhǎng)期儲(chǔ)蓄計(jì)劃,每年年初存款2萬(wàn)元,連續(xù)儲(chǔ)蓄12年.由于資金原因,從第7年年初開(kāi)始,變更為每年年初存款1萬(wàn)元.若存款利率為每年2%,且上一年年末的本息和共同作為下一年年初的本金,則第13年年初時(shí)的本息和約為( 。┤f(wàn)元(結(jié)果精確到0.1).(參考數(shù)據(jù):1.026≈1.13,1.0212≈1.27)
A.20.09萬(wàn)元B.20.50萬(wàn)元C.20.91萬(wàn)元D.21.33萬(wàn)元

查看答案和解析>>

同步練習(xí)冊(cè)答案