3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,-4),則向量$\overrightarrow{a}$在向量$\overrightarrow$上的投影為-1.

分析 利用向量投影的意義解答.

解答 解:由已知向量$\overrightarrow{a}$在向量$\overrightarrow$上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{1×3-2×4}{\sqrt{{3}^{2}+{4}^{2}}}$=-1;
故答案為:-1.

點(diǎn)評(píng) 本題考查了平面向量的投影求法;利用數(shù)量積的幾何意義求之即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=ax2-x,若對(duì)任意x1,x2∈[2,+∞),且x1≠x2,不等式$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.$(\frac{1}{2},+∞)$B.$[\frac{1}{2},+∞)$C.$(\frac{1}{4},+∞)$D.$[\frac{1}{4},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=$\frac{x-a}{{{{(x+a)}^2}}}$,若對(duì)于定義域內(nèi)的任意x1,總存在x2使得f(x2)<f(x1),則滿足條件的實(shí)數(shù)a的取值范圍是a≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.等差數(shù)列{an}中,Sn為其前n項(xiàng)和,若a5=10,S5=30,則$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{2016}}$=$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.向量$\overrightarrow{a}$=(4,-3),則與$\overrightarrow{a}$同向的單位向量$\overrightarrow{{a}_{0}}$=($\frac{4}{5}$,-$\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,求|3$\overrightarrow{a}$-2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.不等式x2-2mx+1≥0對(duì)一切實(shí)數(shù)x都成立,則實(shí)數(shù)m的取值范圍是-1≤m≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知三個(gè)球的半徑R1、R2、R3滿足R1+2R2=3R3,則它們的表面積S1、S2、S3滿足的等量關(guān)系是( 。
A.S1+2S2=3S3B.$\sqrt{{S}_{1}}$+$\sqrt{2{S}_{2}}$=$\sqrt{3{S}_{3}}$C.$\sqrt{{S}_{1}}$+2$\sqrt{{S}_{2}}$=3$\sqrt{{S}_{3}}$D.$\sqrt{{S}_{1}}$+4$\sqrt{{S}_{2}}$=9$\sqrt{{S}_{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列四個(gè)命題:
①命題“?x>0,x2-x≤0”的否定是“?x≤0,x2-x>0
②已知數(shù)列{an},則“an,an+1,an+2成等比數(shù)列”是“an+12=anan+2”的充要條件
③“若xy≠0,則x2+y2≠0”的逆命題
④若p∧q為假命題,則p,q均為假命題
其中假命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案