某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為3:3:4,現(xiàn)用分層抽樣的方法從該校高中三個年級的學(xué)生中抽取容量為80的樣本,則應(yīng)從高一年級抽取
 
名學(xué)生.
考點(diǎn):分層抽樣方法
專題:概率與統(tǒng)計
分析:根據(jù)分層抽樣方法的特征是,從各部分抽取的樣本數(shù)是按照比例數(shù)抽取的,計算出數(shù)值即可.
解答: 解:根據(jù)分層抽樣方法的特征,
從高一年級抽取的學(xué)生數(shù)是
80×
3
3+3+4
=24.
故答案為:24.
點(diǎn)評:本題考查了分層抽樣的應(yīng)用問題,解題時應(yīng)明確分層抽樣方法的特征是什么,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過A(1,
3
)、B(
2
,-
2
),且圓心在直線y=x上,過動點(diǎn)M作圓C的兩條切線,切點(diǎn)分別為A和B,且有
MA
MB
=0,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論成立的個數(shù)為( 。
A、直線m平行于平面α內(nèi)的無數(shù)條直線,則m∥α
B、若直線m垂直于平面α內(nèi)的無數(shù)條直線,則m⊥α
C、若平面α⊥平面β,直線m在α內(nèi),則m⊥β
D、若直線m⊥平面α,n在平面α內(nèi),則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若可行域為式子中的x、y滿足約束條件
y≤x
x+y≤1
y≥-1.

(1)求可行域的面積S;
(2)求z=
y+1
x+1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=lg|x-1|-m有兩個零點(diǎn)x1和x2,則x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)=
m-g(x)
1+g(x)
的定義域為R,其中y=g(x)為指數(shù)函數(shù)且過點(diǎn)(2,4).
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若對任意的t∈[0,5],不等式f(t2+2t+k)+f(-2t2+2t-5)>0解集非空,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
e
1
,
e
2
是兩個不共線的向量,若
a
=2
e
1
-
e
2
b
=
e
1
e
2
共線,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩直線l1:x+my+3=0,l2:(m-1)x+2my+2m=0,若l1∥l2,則m的值為( 。
A、0
B、-1或
1
2
C、3
D、0或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增;q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案