已知p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增;q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若p∨q為真命題,p∧q為假命題,求m的取值范圍.
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:根據(jù)二次函數(shù)的單調(diào)性,以及一元二次不等式的解的情況和判別式△的關(guān)系即可求出命題p,q為真命題時m的取值范圍.根據(jù)p∨q為真命題,p∧q為假命題得到p真q假或p假q真,求出這兩種情況下m的范圍并求并集即可.
解答: 解:若命題p為真,因為函數(shù)f(x)的對稱軸為x=m,則m≤2;
若命題q為真,當(dāng)m=0時原不等式為-8x+4>0,該不等式的解集不為R,即這種情況不存在;
當(dāng)m≠0時,則有
m>0
△=16(m-2)2-16m<0
,解得1<m<4;
若p∨q為真命題,p∧q為假命題,則p,q一真一假;
m≤2
m≤1或m≥4
m>2
1<m<4

解得m≤1或2<m<4;
∴m的取值范圍為(-∞,1]∪(2,4).
點評:考查二次函數(shù)的對稱軸,二次函數(shù)的單調(diào)性,一元二次不等式解的情況和判別式的關(guān)系,以及p∨q,p∧q真假和p,q真假的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為3:3:4,現(xiàn)用分層抽樣的方法從該校高中三個年級的學(xué)生中抽取容量為80的樣本,則應(yīng)從高一年級抽取
 
名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條直線l1:kx+(1-k)y-3=0和l2:(k-1)x+2y-2=0互相垂直,則k=( 。
A、1或-2B、-1或2
C、1或2D、-1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)為奇函數(shù),且x∈[0,+∞)時,f(x)=x2-3x,則不等式
f(x)-f(-x)
x
>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若“(x-a)(x-a-1)<0”是“1<2x<16”的充分不必要條件,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是
 

①命題p:“?x∈R,x2-2≥0”的否定形式是¬p:?x∈R,x2-2<0;
②若¬p是q的必要條件,則p是¬q的充分條件;
③“M>N”是“(
3
4
)M>(
3
4
)N
”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體的三邊長分別是3,4,5,則它的外接球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的函數(shù),則“f(0)=0”是“函數(shù)f(x)為奇函數(shù)”的
 
條件(從“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中選一個).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos2x的圖象經(jīng)過下列何種平移可得函數(shù)y=sin(2x-
π
3
)
的圖象( 。
A、向右平移
12
個單位
B、向左平移
π
6
個單位
C、向右平移
π
12
個單位
D、向右平移
π
3
個單位

查看答案和解析>>

同步練習(xí)冊答案