已知點(diǎn)B(0,1),點(diǎn)C(0,—3),直線PB、PC都是圓的切線(P點(diǎn)不在y軸上).
(I)求過(guò)點(diǎn)P且焦點(diǎn)在x軸上拋物線的標(biāo)準(zhǔn)方程;
(II)過(guò)點(diǎn)(1,0)作直線與(I)中的拋物線相交于M、N兩點(diǎn),問(wèn)是否存在定點(diǎn)R,使為常數(shù)?若存在,求出點(diǎn)R的坐標(biāo)與常數(shù);若不存在,請(qǐng)說(shuō)明理由。
(I) (II)存在定點(diǎn)R(0,0),相應(yīng)的常數(shù)是
解析試題分析:(I)設(shè)直線PC的方程為:,
由所以PC的方程為
由得P點(diǎn)的坐標(biāo)為(3,1)。
可求得拋物線的標(biāo)準(zhǔn)方程為
(II)設(shè)直線l的方程為,代入拋物線方程并整理得
11分
當(dāng)時(shí)上式是一個(gè)與m無(wú)關(guān)的常數(shù)
所以存在定點(diǎn)R(0,0),相應(yīng)的常數(shù)是
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題;平面向量數(shù)量積的運(yùn)算;拋物線的標(biāo)準(zhǔn)方程.
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問(wèn)題.研究直線與圓錐曲線位置關(guān)系的問(wèn)題,通常有兩種方法:一是轉(zhuǎn)化為研究方程組的解的問(wèn)題,利用直線方程與圓錐曲線方程所組成的方程組消去一個(gè)變量后,將交點(diǎn)問(wèn)題(包括公共點(diǎn)個(gè)數(shù)、與交點(diǎn)坐標(biāo)有關(guān)的問(wèn)題)轉(zhuǎn)化為一元二次方程根的問(wèn)題,結(jié)合根與系數(shù)的關(guān)系及判別式解決問(wèn)題;二是運(yùn)用數(shù)形結(jié)合的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知的頂點(diǎn)A在射線上,、兩點(diǎn)關(guān)于x軸對(duì)稱,0為坐標(biāo)原點(diǎn),且線段AB上有一點(diǎn)M滿足當(dāng)點(diǎn)A在上移動(dòng)時(shí),記點(diǎn)M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)是否存在過(guò)的直線與W相交于P,Q兩點(diǎn),使得若存在,
求出直線;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長(zhǎng)度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且(其中O為原點(diǎn)). 求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的左頂點(diǎn)為,是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱.
(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)若橢圓上存在點(diǎn),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)圓的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,兩坐標(biāo)系長(zhǎng)度單位一致,建立平面直角坐標(biāo)系.過(guò)圓上的一點(diǎn)作平行于軸的直線,設(shè)與軸交于點(diǎn),向量.
(Ⅰ)求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)設(shè)點(diǎn) ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線的焦點(diǎn)在拋物線上.
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)過(guò)拋物線上的動(dòng)點(diǎn)作拋物線的兩條切線、, 切點(diǎn)為、.若、的斜率乘積為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,直線l為圓的一條切線,且經(jīng)過(guò)橢圓C的右焦點(diǎn),直線l的傾斜角為,記橢圓C的離心率為e.
(1)求e的值;
(2)試判定原點(diǎn)關(guān)于l的對(duì)稱點(diǎn)是否在橢圓上,并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓C以拋物線的焦點(diǎn)為右焦點(diǎn),且經(jīng)過(guò)點(diǎn)A(2,3).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若分別為橢圓的左右焦點(diǎn),求的角平分線所在直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com