已知函數(shù).
(Ⅰ)設(shè),求的最小值;
(Ⅱ)如何上下平移的圖象,使得的圖象有公共點(diǎn)且在公共點(diǎn)處切線相同.
(Ⅰ) 1;(Ⅱ)的圖象向下平移1個(gè)單位后,兩函數(shù)圖象在公共點(diǎn)(1,0)處有相同的切線
【解析】
試題分析:(Ⅰ)先求導(dǎo),再求導(dǎo)數(shù)等于0的根,解導(dǎo)數(shù)大于0、小于0的不等式得函數(shù)的單調(diào)區(qū)間。根據(jù)函數(shù)單調(diào)性求其最值。(Ⅱ)令,的圖象有公共點(diǎn)即有解。公共點(diǎn)處切線相同.因?yàn)榍悬c(diǎn)為同一點(diǎn)只需斜率相等即可。由導(dǎo)數(shù)的幾何意義可知在切點(diǎn)處的導(dǎo)數(shù)就是在切點(diǎn)處切線的斜率,所以只需兩函數(shù)在切點(diǎn)處導(dǎo)數(shù)相等。解方程組即可求出。
試題解析:(Ⅰ),則, 2分
令解得, 3分
因時(shí),,當(dāng)時(shí),, 5分
所以當(dāng)時(shí),達(dá)到最小,的最小值為1. 7分
(Ⅱ)設(shè)上下平移的圖象為c個(gè)單位的函數(shù)解析式為.
設(shè)的公共點(diǎn)為.
依題意有: 10分
解得,
即將的圖象向下平移1個(gè)單位后,兩函數(shù)圖象在公共點(diǎn)(1,0)處有相同的切線. 13分
考點(diǎn):1導(dǎo)數(shù)、導(dǎo)數(shù)的幾何意義;2利用導(dǎo)數(shù)研究函數(shù)性質(zhì)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年四川省眉山市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆重慶第49中學(xué)七校聯(lián)盟高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)
已知函數(shù),,.
(Ⅰ)設(shè),函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011315370341778155/SYS201301131537336677486442_ST.files/image006.png">,求函數(shù)的最值;
(Ⅱ)求使的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三12月月考理科數(shù)學(xué)試卷 題型:解答題
已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052517551503125493/SYS201205251757389843271479_ST.files/image002.png">(),設(shè).
(1)試確定的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(2)求證:;
(3)求證:對(duì)于任意的,總存在,滿足,并確定這樣的的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南通市高三第二次模擬考試數(shù)學(xué)試題 題型:填空題
已知函數(shù).
(1)設(shè),且,求的值;
(2)在△ABC中,AB=1,,且△ABC的面積為,求sinA+sinB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年福建省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本小題滿分12分) 已知函數(shù).
(1) 設(shè)F(x)= 在上單調(diào)遞增,求的取值范圍。
(2)若函數(shù)與的圖象有兩個(gè)不同的交點(diǎn)M、N,求的取值范圍;
(3)在(2)的條件下,過線段MN的中點(diǎn)作軸的垂線分別與的圖像和的圖像交S、T點(diǎn),以S為切點(diǎn)作的切線,以T為切點(diǎn)作的切線.是否存在實(shí)數(shù)使得,如果存在,求出的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com